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Представлены математические модели динамики стабилизируемого вращением летательного аппара-
та. Разработан алгоритм оптимального управления по критерию А.А. Красовского таким аппаратом  
в реальном времени движения с моделью спирального прогноза в сочетании с пропорционально-ин-
тегрально-дифференциальным регулятором. Приведены результаты численного моделирования, пока-
зывающие применимость данного подхода к рассмотренному классу летательных аппаратов.
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The article presents mathematical models of the dynamics of an aircraft stabilized by rotation. An optimal 
control algorithm has been developed according to the A. A. criterion. Krasovsky with such a realtime motion 
apparatus using a spiral forecast model in combination with a PID controller. The results of numerical 
simulation are presented, showing the applicability of the approach used to the considered class of aircraft.
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Введение. Атмосфера оказывает существенное влияние на сельскохозяйственную дея-
тельность человека. Одно из наиболее опасных явлений погоды – град, который уничтожает 
овощные и садовые культуры, виноград, побеги хлопчатника и др. Нередко от него погибают 
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базирования, включающего разведение спиц, их выдвижение и натяжение фронтальной по-
верхности радиоотражающего сетеполотна с учетом колебательных процессов [19] и др. Была 
доказана теорема об эквивалентности основной и вспомогательной задач оптимизации [20].

Теперь о сложности реальных процессов по сравнению с их математическим описанием. 
Для управления сложными процессами целесообразно использовать самоорганизующиеся 
оптимальные регуляторы с экстраполяцией (СОРЭ) А. А. Красовского [21, 22]. СОРЭ не тре-
буют знания математической модели объекта, по результатам наблюдений сами формируют 
информационную модель. Такие алгоритмы апробированы для ряда технических объектов, 
в том числе для ЛА [13, 23], ускорителя электронов на основе высоковольтного тлеющего раз-
ряда [24], автомобиля [17] и др., а также для социально-экономических систем, гипотетиче-
ски описываемых производственной функцией, моделью развития экономики В. В. Леонтьева 
[25], расчета стоимости опциона на покупку (продажу) акций [17], поддержки управленческих 
решений вузовской администрации [25]. Исследования показали, что СОРЭ можно исполь-
зовать как непосредственно для управления процессом, так и для стабилизации его динамики 
на оптимальной траектории его математической модели, а также как компьютерные трена-
жеры при подготовке администраторов и в качестве компьютерного помощника в процессе 
принятия решения по управлению.

В статье будет изучена возможность применения модели спирального прогноза [26] для 
формирования оптимальной траектории ЛА, стабилизируемого вращением. С использовани-
ем такой модели в работе [13] решена задача управления спускаемым аппаратом по алгоритму 
последовательной оптимизации по иерархии из двух целевых функционалов.

1. Постановка задачи. Стабилизированный вращением ЛА является сильным волчком, кото-
рый реагирует на прикладываемые к нему управляющие силы и моменты нутационно-прецес-
сионным движением, вследствие чего формируется дополнительный импульс аэродинамиче-
ских сил и моментов, а итоговое движение ЛА – результат совместного действия управляющих 
и дополнительных аэродинамических сил и моментов. Указанная особенность требует разра-
ботки особого подхода к синтезу оптимального управления с минимизацией затрат.

Далее исследуется управляемое пространственное движение осесимметричного вращаю-
щегося ЛА постоянной массы. Рассматривается терминальная задача перевода ЛА из произ-
вольно заданного начального состояния в фиксированное конечное состояние.

Уравнения поступательного движения запишем в проекциях на оси траекторной системы 
координат (СК), а уравнения вращательного движения, чтобы избежать переменности момен-
тов инерции, на оси полусвязанной СК [27–29]:
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домашние птицы и мелкий рогатый скот. Для борьбы с градообразующими кучево-дождевы-
ми облаками применяются специальные летательные аппараты (ЛА), распыляющие реагент 
(PbJ2, ArJ), который вызывает кристаллизацию переохлажденных водяных капель. Занос реа-
гента осуществляется в крупнокапельную зону, где происходит интенсивный рост градин [1].  
Исходные данные для пусков ЛА готовятся по показаниям метеорологического локатора, на-
пример МРЛ-5 [2], и используются для выбора точек выброса реагента.

Со второй половины 50-х гг. XX в. для борьбы с градом в нашей стране, наряду с другими 
комплексами, применяются противоградовые ЛА серии “Эльбрус” [3], представляющие со-
бой осесимметричные неуправляемые быстровращающиеся ЛА с активным стартом.

Существенное влияние на эффективность борьбы с градообразованием оказывает точное 
внесение реагента в крупнокапельную область облака, что в случае ее значительной величи-
ны требует рационального расположения точек выброса реагента внутри нее. Выведение не-
управляемого ЛА в заданную точку выброса реагента происходит с ошибкой, что увеличивает 
время воздействия и расход ЛА.

Для управления быстровращающимся ЛА можно использовать управляющую насадку на 
головную часть, оснащенную вращающимся блоком рулей с постоянным углом установки [4].  
Общая схема применения ЛА с управляющей насадкой подразумевает перед пуском ввод дан-
ных о точке выброса реагента при помощи специального установщика. На траектории ЛА 
получает информацию о своем местоположении от космической радионавигационной систе-
мы (КРНС) и производит прогноз траектории. В зависимости от величины промаха спрогно-
зированной траектории относительно точки выброса реагента вырабатывается управляющая 
команда. Управление заключается в установке необходимого для устранения промаха угло-
вого положения блока рулей и сообщения последнему угловой скорости, равной по модулю 
и противоположной по направлению угловой скорости вращения ЛА. Таким образом, поло-
жение рулевых лопастей в полусвязанной с ЛА системе координат будет оставаться неизмен-
ным и последний будет совершать маневр. Вопросам движения ЛА с подобными насадками 
посвящен ряд публикаций в зарубежной печати [5–9], однако в них не затрагивается вопрос 
оптимального управления. В работе [10] рассмотрено приложение аналитического решения 
задачи о вращательном движении оси ЛА к проектированию систем коррекции, а в [11] ис-
следован вопрос о движении ЛА с системой коррекции с одной степенью свободы и получены 
оценки областей достижимости.

В этой связи синтез оптимального управления вращающимися ЛА является актуальной 
и востребованной практикой научной задачей. Теория оптимального управления редко при-
меняется на практике. И это связано не столько с объемом вычислений, сколько с необходи-
мостью выбора начального приближения, обеспечивающего сходимость итерационных про-
цедур нахождения управления. Отказ от оптимизации приводит к понижению роли выбора 
управления и использованию субъективных решений. Как правило, требуется найти управ-
ление сложной системой, да еще в реальном времени. Непосредственное применение теории 
и ее алгоритмов в реальном времени затруднительно. Однако к настоящему времени имеются 
обнадеживающие решения, позволяющие приблизить к повседневной практике идеи оптими-
зации. Это введение в рассмотрение академиком А. А. Красовским полуопределенного функ-
ционала обобщенной работы и  использование для вычисления управления прогнозирую- 
щих моделей [12]. В результате двухточечная краевая задача сводится к двум задачам Коши 
(в прямом и обратном времени соответственно). Алгоритм реализуем в реальном времени. 
Простота реализации сопровождается, правда, потерей в терминальной точности, поскольку 
она определяется значениями весовых коэффициентов в целевом функционале. В ряде случа-
ев удается повысить точность путем рассмотрения иерархии критериев А. А. Красовского и на 
основе упрощения полученного решения применить алгоритм последовательной оптимиза-
ции [13, 14]. Другим подходом является рассмотрение вспомогательной задачи оптимизации, 
облегчающей решение основной исходной задачи. В этом случае из решения основной задачи 
по принципу максимума формируется структура управления, коррекция параметров которой 
может производиться, в частности, из условия минимума как функционала с дополнительной 
интегральной частью, включающей затраты на управление, с применением принципа макси-
мума, так и критерия А. А. Красовского с использованием алгоритма с прогнозирующей мо-
делью. “Коль скоро структура оптимального управления тем или иным способом угадана, не 
так трудно установить, как правило, что она действительно такова”, – писал Р. Беллман [15]. 
Причем структура может быть выбрана с избытком, тогда в процессе вычислений происхо-
дит ее упрощение [16]. Этот алгоритм с успехом применялся для сложных задач управления: 
мостовым краном, автомобилем [17], автоматическим подводным аппаратом при наличии 
участка особого управления [18], для раскрытия трансформируемой антенны космического 
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базирования, включающего разведение спиц, их выдвижение и натяжение фронтальной по-
верхности радиоотражающего сетеполотна с учетом колебательных процессов [19] и др. Была 
доказана теорема об эквивалентности основной и вспомогательной задач оптимизации [20].

Теперь о сложности реальных процессов по сравнению с их математическим описанием. 
Для управления сложными процессами целесообразно использовать самоорганизующиеся 
оптимальные регуляторы с экстраполяцией (СОРЭ) А. А. Красовского [21, 22]. СОРЭ не тре-
буют знания математической модели объекта, по результатам наблюдений сами формируют 
информационную модель. Такие алгоритмы апробированы для ряда технических объектов, 
в том числе для ЛА [13, 23], ускорителя электронов на основе высоковольтного тлеющего раз-
ряда [24], автомобиля [17] и др., а также для социально-экономических систем, гипотетиче-
ски описываемых производственной функцией, моделью развития экономики В. В. Леонтьева 
[25], расчета стоимости опциона на покупку (продажу) акций [17], поддержки управленческих 
решений вузовской администрации [25]. Исследования показали, что СОРЭ можно исполь-
зовать как непосредственно для управления процессом, так и для стабилизации его динамики 
на оптимальной траектории его математической модели, а также как компьютерные трена-
жеры при подготовке администраторов и в качестве компьютерного помощника в процессе 
принятия решения по управлению.

В статье будет изучена возможность применения модели спирального прогноза [26] для 
формирования оптимальной траектории ЛА, стабилизируемого вращением. С использовани-
ем такой модели в работе [13] решена задача управления спускаемым аппаратом по алгоритму 
последовательной оптимизации по иерархии из двух целевых функционалов.

1. Постановка задачи. Стабилизированный вращением ЛА является сильным волчком, кото-
рый реагирует на прикладываемые к нему управляющие силы и моменты нутационно-прецес-
сионным движением, вследствие чего формируется дополнительный импульс аэродинамиче-
ских сил и моментов, а итоговое движение ЛА – результат совместного действия управляющих 
и дополнительных аэродинамических сил и моментов. Указанная особенность требует разра-
ботки особого подхода к синтезу оптимального управления с минимизацией затрат.

Далее исследуется управляемое пространственное движение осесимметричного вращаю-
щегося ЛА постоянной массы. Рассматривается терминальная задача перевода ЛА из произ-
вольно заданного начального состояния в фиксированное конечное состояние.

Уравнения поступательного движения запишем в проекциях на оси траекторной системы 
координат (СК), а уравнения вращательного движения, чтобы избежать переменности момен-
тов инерции, на оси полусвязанной СК [27–29]:
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домашние птицы и мелкий рогатый скот. Для борьбы с градообразующими кучево-дождевы-
ми облаками применяются специальные летательные аппараты (ЛА), распыляющие реагент 
(PbJ2, ArJ), который вызывает кристаллизацию переохлажденных водяных капель. Занос реа-
гента осуществляется в крупнокапельную зону, где происходит интенсивный рост градин [1].  
Исходные данные для пусков ЛА готовятся по показаниям метеорологического локатора, на-
пример МРЛ-5 [2], и используются для выбора точек выброса реагента.

Со второй половины 50-х гг. XX в. для борьбы с градом в нашей стране, наряду с другими 
комплексами, применяются противоградовые ЛА серии “Эльбрус” [3], представляющие со-
бой осесимметричные неуправляемые быстровращающиеся ЛА с активным стартом.

Существенное влияние на эффективность борьбы с градообразованием оказывает точное 
внесение реагента в крупнокапельную область облака, что в случае ее значительной величи-
ны требует рационального расположения точек выброса реагента внутри нее. Выведение не-
управляемого ЛА в заданную точку выброса реагента происходит с ошибкой, что увеличивает 
время воздействия и расход ЛА.

Для управления быстровращающимся ЛА можно использовать управляющую насадку на 
головную часть, оснащенную вращающимся блоком рулей с постоянным углом установки [4].  
Общая схема применения ЛА с управляющей насадкой подразумевает перед пуском ввод дан-
ных о точке выброса реагента при помощи специального установщика. На траектории ЛА 
получает информацию о своем местоположении от космической радионавигационной систе-
мы (КРНС) и производит прогноз траектории. В зависимости от величины промаха спрогно-
зированной траектории относительно точки выброса реагента вырабатывается управляющая 
команда. Управление заключается в установке необходимого для устранения промаха угло-
вого положения блока рулей и сообщения последнему угловой скорости, равной по модулю 
и противоположной по направлению угловой скорости вращения ЛА. Таким образом, поло-
жение рулевых лопастей в полусвязанной с ЛА системе координат будет оставаться неизмен-
ным и последний будет совершать маневр. Вопросам движения ЛА с подобными насадками 
посвящен ряд публикаций в зарубежной печати [5–9], однако в них не затрагивается вопрос 
оптимального управления. В работе [10] рассмотрено приложение аналитического решения 
задачи о вращательном движении оси ЛА к проектированию систем коррекции, а в [11] ис-
следован вопрос о движении ЛА с системой коррекции с одной степенью свободы и получены 
оценки областей достижимости.

В этой связи синтез оптимального управления вращающимися ЛА является актуальной 
и востребованной практикой научной задачей. Теория оптимального управления редко при-
меняется на практике. И это связано не столько с объемом вычислений, сколько с необходи-
мостью выбора начального приближения, обеспечивающего сходимость итерационных про-
цедур нахождения управления. Отказ от оптимизации приводит к понижению роли выбора 
управления и использованию субъективных решений. Как правило, требуется найти управ-
ление сложной системой, да еще в реальном времени. Непосредственное применение теории 
и ее алгоритмов в реальном времени затруднительно. Однако к настоящему времени имеются 
обнадеживающие решения, позволяющие приблизить к повседневной практике идеи оптими-
зации. Это введение в рассмотрение академиком А. А. Красовским полуопределенного функ-
ционала обобщенной работы и  использование для вычисления управления прогнозирую- 
щих моделей [12]. В результате двухточечная краевая задача сводится к двум задачам Коши 
(в прямом и обратном времени соответственно). Алгоритм реализуем в реальном времени. 
Простота реализации сопровождается, правда, потерей в терминальной точности, поскольку 
она определяется значениями весовых коэффициентов в целевом функционале. В ряде случа-
ев удается повысить точность путем рассмотрения иерархии критериев А. А. Красовского и на 
основе упрощения полученного решения применить алгоритм последовательной оптимиза-
ции [13, 14]. Другим подходом является рассмотрение вспомогательной задачи оптимизации, 
облегчающей решение основной исходной задачи. В этом случае из решения основной задачи 
по принципу максимума формируется структура управления, коррекция параметров которой 
может производиться, в частности, из условия минимума как функционала с дополнительной 
интегральной частью, включающей затраты на управление, с применением принципа макси-
мума, так и критерия А. А. Красовского с использованием алгоритма с прогнозирующей мо-
делью. “Коль скоро структура оптимального управления тем или иным способом угадана, не 
так трудно установить, как правило, что она действительно такова”, – писал Р. Беллман [15]. 
Причем структура может быть выбрана с избытком, тогда в процессе вычислений происхо-
дит ее упрощение [16]. Этот алгоритм с успехом применялся для сложных задач управления: 
мостовым краном, автомобилем [17], автоматическим подводным аппаратом при наличии 
участка особого управления [18], для раскрытия трансформируемой антенны космического 
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Система уравнений (1.1) может быть получена из уравнений (4.56)–(4.64) из работы [28], 
если положить в них массу ЛА постоянной, Землю в пределах траектории плоской и не вра-
щающейся, а угол крена принять равным нулю.

Блок рулей кинематически развязан по вращению с корпусом ЛА по осевому вращению 
и является ротором бесколлекторного электродвигателя постоянного тока. На участке кор-
рекции, имея заданный системой управления угол γ р, по данным датчиков угловой скорости 
и положения блока рулей, управляющий контроллер электродвигателя изменяет напряжение 
питания таким образом, чтобы угловая скорость вращения блока рулей равнялась угловой 
скорости вращения ЛА, а угол наклона блока рулей соответствовал бы заданному. Равенство 
угловых скоростей вращения ЛА и блока рулей приводит к практически неизменному поло-
жению последнего в пространстве.

Таким образом, состояние ЛА описывается 12 переменными, из которых система управле-
ния может оказывать целенаправленное влияние на линейные и угловые ускорения, причем 
ускорения вдоль оси Х появляются на участке управления, зависят только от факта управле-
ния и не зависят от других параметров, а линейные и угловые ускорения относительно по-
лусвязанных осей Y и Z оказываются функционально связанными величинами, т. е. некоторо-
му линейному ускорению однозначно соответствует угловое.

При полете малого осесимметричного вращающегося ЛА, стремящегося достичь зоны 
градообразования внутри облака, надо использовать алгоритмы, формирующие управление 
в реальном времени. Поскольку условия применения таких ЛА изменчивы в зависимости от 
явлений погоды, то реализация программных траекторий не продуктивна. Задачу управления 
можно решать по-разному. В работе [30] с помощью концепции обратных задач динамики 
по заданной достигающей цели траектории полета ЛА (как в вертикальной плоскости, так 
и в пространстве) в виде степенного полинома от продольной дальности, коэффициенты ко-
торого определяются из решения краевой задачи, вычисляется значение перегрузки в текущий 
момент времени. Это решение затруднительно использовать при необходимости ситуацион-
ного облета запретной области. Уравнения (1.1) примем в качестве имитационной модели.

В данной статье предложено формировать оптимальное управление с использованием ал-
горитма спирального прогноза [26], который допускает реализацию в реальном времени.

2. Основной результат. Для целей управления земную нормальную систему координат бу-
дем считать инерциальной и рассмотрим уравнения динамики ЛА в связанных осях [26]:

v v g n= + −( )Ω ε2 ,                                                                (2.1)

ε εT T= Ω ,                                                                          (2.2)
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Здесь n n n nx y z= ( )т
 – вектор перегрузок с проекциями на оси траекторной СК, m  – масса 

ЛА, I x, I y  Iz  – осевой и  экваториальные моменты инерции ЛА; V V V Vx y z= + +2 2 2  – мо-
дуль вектора скорости с проекциями на оси связанной СК, θ  – угол наклона траектории; 
γ  – угол пути, A A A Ax y zт т т т

т
= ( ) – вектор аэродинамических сил в траекторной системе 

координат; M M M Mx y zпс пс пс пс
т

= ( ) – вектор аэродинамических моментов в  полусвязан-
ной системе координат; g  – ускорение силы тяжести; ω ω ϑ ω ωпс пс пс пс

т
= ( )y y ztg – вектор 

угловой скорости вращения в полусвязанной системе координат; ψ , ϑ , γ – углы рыскания, 
тангажа и крена ЛА соответственно; δ  – угол нутации ЛА, x, y, z – координаты центра масс 
ЛА в стартовой системе координат, радиус Земли принимается равным радиусу сферы, ап-
проксимирующему геоид, Rз = 6356766 м; q V= ρ 2 2/  – скоростной напор, M – число Маха, 
ρ  – плотность воздуха, S  – площадь миделя, Sр  – площадь рулевой поверхности, L  – длина 
ЛА; аэродинамические коэффициенты: cx  – лобового сопротивления, cy

δ  и  cn
δ  – производных 

коэффициентов подъемной силы и нормальной силы рулевой поверхности по углу атаки руля; 
mz

δ  и  mz
zω  – производная коэффициента опрокидывающего момента по углу нутации и коэф-

фициент демпфирующего момента. Из главных векторов аэродинамических сил и моментов 
исключены сила и момент Магнуса, поскольку их вклад в движение ЛА не превышает ошибок, 
вызванных приближенным определением основных аэродинамических коэффициентов. Углы 
атаки α  и скольжения β, в силу их малости для устойчивых быстровращающихся ЛА, а также 
малости углов пути и рыскания, определяются выражениями: α ϑ θ= − , β = −( )Ψ                         θΨ / cos .

Блок рулей характеризуется площадью рулевой поверхности Sр, продольной координатой, от-
считываемой от центра масс ЛА lр, и углом установки рулей δр. За управление принимается угол 
наклона блока рулей γ р  от вертикальной плоскости (рис. 1), принимающий значения от 0 до 2.

Рис. 1. Схема ЛА с системой коррекции вращающимся блоком рулей. ЦМ – центр масс.
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градообразования внутри облака, надо использовать алгоритмы, формирующие управление 
в реальном времени. Поскольку условия применения таких ЛА изменчивы в зависимости от 
явлений погоды, то реализация программных траекторий не продуктивна. Задачу управления 
можно решать по-разному. В работе [30] с помощью концепции обратных задач динамики 
по заданной достигающей цели траектории полета ЛА (как в вертикальной плоскости, так 
и в пространстве) в виде степенного полинома от продольной дальности, коэффициенты ко-
торого определяются из решения краевой задачи, вычисляется значение перегрузки в текущий 
момент времени. Это решение затруднительно использовать при необходимости ситуацион-
ного облета запретной области. Уравнения (1.1) примем в качестве имитационной модели.
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v v g n= + −( )Ω ε2 ,                                                                (2.1)

ε εT T= Ω ,                                                                          (2.2)



 ϕ λ εh d v( ) =
т * ,
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d
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∗ =
+ +( )







diag , ,

cos

1
1

1

з з φ
, ε ε ε ε2 21 22 23= ( )T ,

ε ψ ϑ11 = cos cos , ε υ21 = sin , ε ψ ϑ31 = − sin cos ,

ε ψ γ ψ ϑ γ12 = −sin sin cos sin cos , ε ϑ γ22 = cos cos ,

ε ψ γ ψ ϑ γ32 = +cos sin sin sin cos , ε ψ γ ψ ϑ γ13 = +sin cos cos sin sin ,

ε ϑ γ23 = − cos sin , ε ψ γ ψ ϑ γ33 = −cos cos sin sin sin ,

εv vg= , v v v vx y z= ( )т
 – скорость ЛА с проекциями на оси связанной СК, vg  – скорость ЛА 

в земной СК, φ, λ  – широта и долгота ЛА, h  – высота полета, Rз  – радиус Земли.

y V= sin θ,

z V= − cos sinθ Ψ,

n A mgx x= ( )т / ,  n A mgy y= ( )т / ,  n A mgz z= ( )т / ,  A c M c M S S qSx x xт р р= − ( ) − ( )( ), /δ , 
A c M c M S S qSy y nт р р р= ( ) + ( )( )δ δδ α δ γ, sin / , A c M c M S S qSz y nт р р р= − ( ) − ( )( )δ δδ β δ γ, cos / ,
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V
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x
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р

р р
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δ ω δδ β δ
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р= − ( ) + ( ) + ( )
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δ ω δδ α δ
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δ γ, , sin SSL.

Здесь n n n nx y z= ( )т
 – вектор перегрузок с проекциями на оси траекторной СК, m  – масса 

ЛА, I x, I y  Iz  – осевой и  экваториальные моменты инерции ЛА; V V V Vx y z= + +2 2 2  – мо-
дуль вектора скорости с проекциями на оси связанной СК, θ  – угол наклона траектории; 
γ  – угол пути, A A A Ax y zт т т т

т
= ( ) – вектор аэродинамических сил в траекторной системе 

координат; M M M Mx y zпс пс пс пс
т

= ( ) – вектор аэродинамических моментов в  полусвязан-
ной системе координат; g  – ускорение силы тяжести; ω ω ϑ ω ωпс пс пс пс

т
= ( )y y ztg – вектор 

угловой скорости вращения в полусвязанной системе координат; ψ , ϑ , γ – углы рыскания, 
тангажа и крена ЛА соответственно; δ  – угол нутации ЛА, x, y, z – координаты центра масс 
ЛА в стартовой системе координат, радиус Земли принимается равным радиусу сферы, ап-
проксимирующему геоид, Rз = 6356766 м; q V= ρ 2 2/  – скоростной напор, M – число Маха, 
ρ  – плотность воздуха, S  – площадь миделя, Sр  – площадь рулевой поверхности, L  – длина 
ЛА; аэродинамические коэффициенты: cx  – лобового сопротивления, cy

δ  и  cn
δ  – производных 

коэффициентов подъемной силы и нормальной силы рулевой поверхности по углу атаки руля; 
mz

δ  и  mz
zω  – производная коэффициента опрокидывающего момента по углу нутации и коэф-

фициент демпфирующего момента. Из главных векторов аэродинамических сил и моментов 
исключены сила и момент Магнуса, поскольку их вклад в движение ЛА не превышает ошибок, 
вызванных приближенным определением основных аэродинамических коэффициентов. Углы 
атаки α  и скольжения β, в силу их малости для устойчивых быстровращающихся ЛА, а также 
малости углов пути и рыскания, определяются выражениями: α ϑ θ= − , β = −( )Ψ                         θΨ / cos .

Блок рулей характеризуется площадью рулевой поверхности Sр, продольной координатой, от-
считываемой от центра масс ЛА lр, и углом установки рулей δр. За управление принимается угол 
наклона блока рулей γ р  от вертикальной плоскости (рис. 1), принимающий значения от 0 до 2.

Рис. 1. Схема ЛА с системой коррекции вращающимся блоком рулей. ЦМ – центр масс.
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В данной работе для стабилизации в целях упрощения вместо СОРЭ будет применен про-
порционально-интегрально-дифференциальный (ПИД) регулятор

u r e r e d r e
t

= + +∫1 2 3

0

τ .

Если решать обратную задачу оптимизации с целью получения целевого функционала для 
управления в виде ПИД-регулятора, то оказывается, что надо использовать СОРЭ. В работе 
[36] показано, что ПИД-регулятор является частным случаем СОРЭ. При этом измеряется 
интеграл

z t e d
t

( ) = ∫ τ
0

от рассогласования е в трех точках, а информационный полином выбирается без самоорга-
низации аппроксимирующим в виде параболы. Оптимальное по критерию А. А. Красовского 
(2.3) (V x tf c= ( )0 5 1 1

2. β , f xo = 0 5 2 1
2. β , t0 0= , t tf c= , x z1 = ) управление формируется регулятором 

в виде u K pl= − +1, где β1, β2, tc  заданы, а сопряженные переменные определяются в виде
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полученном методом математической индукции [13]. Здесь u  – управление, где l  – поря-
док полинома ( l = 2, так как используется парабола); β1, β2, K – весовые коэффициенты 
в целевом функционале, tc  – интервал оптимизации, ai , i = 0 2, , – коэффициенты полино-
ма z t a t a t a( ) = + +2

2
1 0 . В этом частном случае структура управления совпадает со структурой 

ПИД-регулятора, а коэффициенты ПИД-регулятора вычисляются однозначно через коэффи-
циенты функционала и величину интервала оптимизации:

r K tc1 2
41

24
= β , r K

t tc c
2

2

1
2

2 3
= − +



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β
β , r K tc3 2

51
120

= − β .

3. Моделирование. При моделировании необходимые для определения управления част-
ные производные ∂ ∂V yf i/  в алгоритме со спиральным прогнозом определяются численно, 
и управления вычисляются в виде u k V yi i f i= − ( )2 ∆ ∆/ , i = 1 5, . Приращения ∆y принимались 
такими: ∆ ∆ ∆ ∆ ∆ ∆ ∆y n n n tx y z y z f= ( ) =ω ω

т
0 2 0 2 0 01 0 005 0 1. . . . .( )т .

В расчетах для упрощения на вход имитационной модели через инерционное звено пода-
ется управление в виде ПД-регулятора (пропорционально-дифференциальный):

γ ω ωр р 1 р 2 р 3 р 4 р 5 р 6 р 7= + + + + + +k n k n k k k n k n ky z y z y z∆ ∆ ∆ ∆ ∆ ∆ ∆   ω ωy zk+ р 8∆ .

Здесь ∆n n ny y y s= − , ∆n n nz z z s= − , ∆ω ω ωy y y s= − , ∆ω ω ωz z z s= − , ∆  n u ny y s= −1 , ∆  n u nz z s= −2 ,  
∆  ω ωy y su= −3 , ∆  ω ωz z su= −4 , где n n t t n t ty s y s y s= +( ) − ( ) ∆ ∆/ , n n t t n t tz s z s z s= +( ) − ( ) ∆ ∆/ ,  
ω ω ωy s y s y st t t t= +( ) − ( ) ∆ ∆/ , ω ω ωz s z s z st t t t= +( ) − ( ) ∆ ∆/ . Проекции перегрузки в алго-

ритме со спиральным прогнозом рассматриваются в связанных осях, а в имитационной моде-
ли – в траекторной СК. Поэтому n (т. е. nт) надо перевести в  nсв  с помощью матрицы перехода 
n D nсв св

т
т= , D D Dсв

т
св
н

н
т= , D Dсв

н
н
св т

= ( ) ,

n d n d n d nx y zсв x = + +11 12 13 , n d n d n d ny x y zсв = + +21 22 23 , n d n d n d nz x y zсв = + +31 32 33 ;

d11 = + −( )sin sin cos cos cosϑ θ ψ ϑ θΨ , d12 = − −( )sin cos cos cos sinϑ θ ψ ϑ θΨ ,

d13 = − −( )cos sinϑ ψ Ψ ,

d21 = − −( ) + −( )cos cos sin cos cos sin cos sin sin cosγ ϑ θ ψ γ ϑ θ ψ γ θΨ Ψ ,

d22 = + −( ) − −( )cos cos cos cos cos sin sin sin sin sinγ ϑ θ ψ γ ϑ θ ψ γ θΨ Ψ ,

Среди достоинств такой формы описания кинематики углового движения можно отметить 
отсутствие особых точек, т. е. моделируемые угловые движения не имеют ограничений. Избы-
точность вычисляемых параметров (девять вместо трех) частично компенсируется, если одну 
из строк матрицы ε = Dн

св  определять через алгебраические дополнения.
Управление зададим в  виде y ui i= , i = 1 5, , y n n ty z y z f= ( )ω ω

т
, n uy = 1, n uz = 2, ω y u= 3,  

ωz u= 4, t uf = 5 . Здесь nx, ny , nz  – компоненты вектора перегрузки n  в связанных осях. Урав-
нения (2.1), (2.2) имеют аналитическое решение [26, 31].

Задача оптимизации системы (2.1), (2.2) по классическому критерию по принципу макси-
мума с решением двухточечной краевой задачи методом Ньютона продемонстрировала вы-
числительные затруднения [32], связанные с заданием начальных условий для сопряженных 
переменных. И хотя удалось выявить локальные зоны сходимости, рекомендовать его для 
реализации в реальном времени преждевременно, даже с учетом концепции “гибких кине-
матических траекторий” [33]. Поэтому для разработки алгоритма, реализуемого в реальном 
времени, рассмотрим целевой функционал в виде критерия Красовского:

I V x f x u u t dtf f o

t

t f

= ( ) + ( )∫, t , , ,0

0

,                                                       (2.3)

где x – n-мерный вектор состояния, u – m-мерный вектор управления, uo  – оптимальное 
значение вектора u, f0, V f  – заданные положительно-определенные функции своих аргу-
ментов, имеющие непрерывные частные производные по x, t , а функция f0  – еще и по u.  
Примем V x t l h z l h zf f f f f

T
f f f, ,( ) = ( ) ( )0 5 ∆ ∆ ∆ ∆ ∆ ∆ρ , x x t0 0= ( ), ∆l l t lf f f= ( ) − , ∆h h t hf f f= ( ) − ,  

∆z z t zf f f= ( ) − , f x u t Q x t u K u u K u0
1 10 5, , , .( ) = ( ) + +( )− −T

o
T

o , K diag k k k= ( )1
2

2
2

5
2, , , , ρ ρ ρ ρ= ( )diag , ,1 2 3 ;  

l f , hf , z f  – заданные конечные значения координат точки доставки полезной нагрузки.
В  соответствии с  алгоритмом с  прогнозирующей моделью (на  прогнозе ui = 0, i = 1 5, )  

управления формируются в  виде u k V yi i i= − ∂ ∂( )2 / . При Q x t,( ) = 0  уравнение Ляпунова 
V Q x t= − ( ),  принимает вид V = 0  и  ∂ ∂ = ∂ ∂V y V yi f i/ / , отсюда u k V yi i f i= − ∂ ∂( )2 / . Учет ус-

ловий полета на всем интервале оптимизации (ограничения по высоте, перегрузкам, аэроди-
намическим углам и др.) может осуществляться посредством соответствующего выбора по-
дынтегральной функции Q x t,( ). При Q x t,( ) ≠ 0  путем введения дополнительной переменной 
x Q x tn+ = ( )1 ,  имеем V V x tf Q f n f= + ( )+1 , и задача сводится к предыдущему случаю. Если огра-

ничения действуют на ограниченных временных интервалах (например, включением в  Q x t,( ) 
функции штрафа за превышения некоторыми компонентами вектора состояния предельных 
значений), то приходим к алгоритму с прогнозирующей моделью при нулевом управлении. 
При этом в прямом времени прогноз производится по аналитическим формулам спирального 
прогноза, а при численном обратном прогнозировании вдоль модели (2.1), (2.2) добавляются 
уравнения для сопряженных переменных [34].

Алгоритмы отработки оптимальных траекторных задающих воздействий могут строиться на 
основе различных систем стабилизации [27]. Если маневрирование ЛА не является интенсив-
ным, то могут применяться оптимальные регуляторы. Для случая быстрых интенсивных манев-
ров можно использовать алгоритмы обратных задач динамики. Продуктивным, особенно при 
изменении аэродинамических характеристик ЛА в полете, является применение СОРЭ.

Если выбор порядка информационного полинома, формируемого по дискретно получаемым наб- 
людениям (самоорганизация информационной модели), происходит периодически на заданном 
интервале времени [0, tc] (цикле), то необходимая для вычисления управления оценка вектора x 
состояния внутри этого цикла (в данном случае это вектор выходных параметров и их производных) 
производится с привлечением текущих измерений с помощью фильтра Калмана. В работе [35] ре-
комендован выбор соответствующих начальных значений элементов матрицы ковариаций фильтра 
Калмана, где, в частности, приведены числовые значения этой матрицы при ее порядке от 3 по 
7. На борту хранятся в памяти значения элементов ковариационных матриц для разных порядков 
полиномиальной модели. Это симметричная матрица квазидиагонального вида, диагональные и со-
седние с ними элементы которой компактно можно представить следующим образом [17]:

P l i C l i ll l l− − −
− −= − −( )  ≥ = −1 1

2
2 1
2 11 1 0 1, ( )

(l i)! , , , ,

P l i l i C l i ll l i l− − + −
− − += − − −( ) −( ) ≥ = −1 1 2 1

2 1 11
2

1 2 1 1, ( )
(l i)! ! , , , ,

а все остальные элементы равны нулю.
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Если решать обратную задачу оптимизации с целью получения целевого функционала для 
управления в виде ПИД-регулятора, то оказывается, что надо использовать СОРЭ. В работе 
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полученном методом математической индукции [13]. Здесь u  – управление, где l  – поря-
док полинома ( l = 2, так как используется парабола); β1, β2, K – весовые коэффициенты 
в целевом функционале, tc  – интервал оптимизации, ai , i = 0 2, , – коэффициенты полино-
ма z t a t a t a( ) = + +2

2
1 0 . В этом частном случае структура управления совпадает со структурой 

ПИД-регулятора, а коэффициенты ПИД-регулятора вычисляются однозначно через коэффи-
циенты функционала и величину интервала оптимизации:

r K tc1 2
41

24
= β , r K

t tc c
2

2

1
2

2 3
= − +





β
β , r K tc3 2

51
120

= − β .

3. Моделирование. При моделировании необходимые для определения управления част-
ные производные ∂ ∂V yf i/  в алгоритме со спиральным прогнозом определяются численно, 
и управления вычисляются в виде u k V yi i f i= − ( )2 ∆ ∆/ , i = 1 5, . Приращения ∆y принимались 
такими: ∆ ∆ ∆ ∆ ∆ ∆ ∆y n n n tx y z y z f= ( ) =ω ω

т
0 2 0 2 0 01 0 005 0 1. . . . .( )т .

В расчетах для упрощения на вход имитационной модели через инерционное звено пода-
ется управление в виде ПД-регулятора (пропорционально-дифференциальный):

γ ω ωр р 1 р 2 р 3 р 4 р 5 р 6 р 7= + + + + + +k n k n k k k n k n ky z y z y z∆ ∆ ∆ ∆ ∆ ∆ ∆   ω ωy zk+ р 8∆ .

Здесь ∆n n ny y y s= − , ∆n n nz z z s= − , ∆ω ω ωy y y s= − , ∆ω ω ωz z z s= − , ∆  n u ny y s= −1 , ∆  n u nz z s= −2 ,  
∆  ω ωy y su= −3 , ∆  ω ωz z su= −4 , где n n t t n t ty s y s y s= +( ) − ( ) ∆ ∆/ , n n t t n t tz s z s z s= +( ) − ( ) ∆ ∆/ ,  
ω ω ωy s y s y st t t t= +( ) − ( ) ∆ ∆/ , ω ω ωz s z s z st t t t= +( ) − ( ) ∆ ∆/ . Проекции перегрузки в алго-

ритме со спиральным прогнозом рассматриваются в связанных осях, а в имитационной моде-
ли – в траекторной СК. Поэтому n (т. е. nт) надо перевести в  nсв  с помощью матрицы перехода 
n D nсв св

т
т= , D D Dсв

т
св
н

н
т= , D Dсв

н
н
св т

= ( ) ,

n d n d n d nx y zсв x = + +11 12 13 , n d n d n d ny x y zсв = + +21 22 23 , n d n d n d nz x y zсв = + +31 32 33 ;

d11 = + −( )sin sin cos cos cosϑ θ ψ ϑ θΨ , d12 = − −( )sin cos cos cos sinϑ θ ψ ϑ θΨ ,

d13 = − −( )cos sinϑ ψ Ψ ,

d21 = − −( ) + −( )cos cos sin cos cos sin cos sin sin cosγ ϑ θ ψ γ ϑ θ ψ γ θΨ Ψ ,

d22 = + −( ) − −( )cos cos cos cos cos sin sin sin sin sinγ ϑ θ ψ γ ϑ θ ψ γ θΨ Ψ ,

Среди достоинств такой формы описания кинематики углового движения можно отметить 
отсутствие особых точек, т. е. моделируемые угловые движения не имеют ограничений. Избы-
точность вычисляемых параметров (девять вместо трех) частично компенсируется, если одну 
из строк матрицы ε = Dн

св  определять через алгебраические дополнения.
Управление зададим в  виде y ui i= , i = 1 5, , y n n ty z y z f= ( )ω ω

т
, n uy = 1, n uz = 2, ω y u= 3,  

ωz u= 4, t uf = 5 . Здесь nx, ny , nz  – компоненты вектора перегрузки n  в связанных осях. Урав-
нения (2.1), (2.2) имеют аналитическое решение [26, 31].

Задача оптимизации системы (2.1), (2.2) по классическому критерию по принципу макси-
мума с решением двухточечной краевой задачи методом Ньютона продемонстрировала вы-
числительные затруднения [32], связанные с заданием начальных условий для сопряженных 
переменных. И хотя удалось выявить локальные зоны сходимости, рекомендовать его для 
реализации в реальном времени преждевременно, даже с учетом концепции “гибких кине-
матических траекторий” [33]. Поэтому для разработки алгоритма, реализуемого в реальном 
времени, рассмотрим целевой функционал в виде критерия Красовского:

I V x f x u u t dtf f o

t

t f

= ( ) + ( )∫, t , , ,0

0

,                                                       (2.3)

где x – n-мерный вектор состояния, u – m-мерный вектор управления, uo  – оптимальное 
значение вектора u, f0, V f  – заданные положительно-определенные функции своих аргу-
ментов, имеющие непрерывные частные производные по x, t , а функция f0  – еще и по u.  
Примем V x t l h z l h zf f f f f

T
f f f, ,( ) = ( ) ( )0 5 ∆ ∆ ∆ ∆ ∆ ∆ρ , x x t0 0= ( ), ∆l l t lf f f= ( ) − , ∆h h t hf f f= ( ) − ,  

∆z z t zf f f= ( ) − , f x u t Q x t u K u u K u0
1 10 5, , , .( ) = ( ) + +( )− −T

o
T

o , K diag k k k= ( )1
2

2
2

5
2, , , , ρ ρ ρ ρ= ( )diag , ,1 2 3 ;  

l f , hf , z f  – заданные конечные значения координат точки доставки полезной нагрузки.
В  соответствии с  алгоритмом с  прогнозирующей моделью (на  прогнозе ui = 0, i = 1 5, )  

управления формируются в  виде u k V yi i i= − ∂ ∂( )2 / . При Q x t,( ) = 0  уравнение Ляпунова 
V Q x t= − ( ),  принимает вид V = 0  и  ∂ ∂ = ∂ ∂V y V yi f i/ / , отсюда u k V yi i f i= − ∂ ∂( )2 / . Учет ус-

ловий полета на всем интервале оптимизации (ограничения по высоте, перегрузкам, аэроди-
намическим углам и др.) может осуществляться посредством соответствующего выбора по-
дынтегральной функции Q x t,( ). При Q x t,( ) ≠ 0  путем введения дополнительной переменной 
x Q x tn+ = ( )1 ,  имеем V V x tf Q f n f= + ( )+1 , и задача сводится к предыдущему случаю. Если огра-

ничения действуют на ограниченных временных интервалах (например, включением в  Q x t,( ) 
функции штрафа за превышения некоторыми компонентами вектора состояния предельных 
значений), то приходим к алгоритму с прогнозирующей моделью при нулевом управлении. 
При этом в прямом времени прогноз производится по аналитическим формулам спирального 
прогноза, а при численном обратном прогнозировании вдоль модели (2.1), (2.2) добавляются 
уравнения для сопряженных переменных [34].

Алгоритмы отработки оптимальных траекторных задающих воздействий могут строиться на 
основе различных систем стабилизации [27]. Если маневрирование ЛА не является интенсив-
ным, то могут применяться оптимальные регуляторы. Для случая быстрых интенсивных манев-
ров можно использовать алгоритмы обратных задач динамики. Продуктивным, особенно при 
изменении аэродинамических характеристик ЛА в полете, является применение СОРЭ.

Если выбор порядка информационного полинома, формируемого по дискретно получаемым наб- 
людениям (самоорганизация информационной модели), происходит периодически на заданном 
интервале времени [0, tc] (цикле), то необходимая для вычисления управления оценка вектора x 
состояния внутри этого цикла (в данном случае это вектор выходных параметров и их производных) 
производится с привлечением текущих измерений с помощью фильтра Калмана. В работе [35] ре-
комендован выбор соответствующих начальных значений элементов матрицы ковариаций фильтра 
Калмана, где, в частности, приведены числовые значения этой матрицы при ее порядке от 3 по 
7. На борту хранятся в памяти значения элементов ковариационных матриц для разных порядков 
полиномиальной модели. Это симметричная матрица квазидиагонального вида, диагональные и со-
седние с ними элементы которой компактно можно представить следующим образом [17]:

P l i C l i ll l l− − −
− −= − −( )  ≥ = −1 1

2
2 1
2 11 1 0 1, ( )

(l i)! , , , ,

P l i l i C l i ll l i l− − + −
− − += − − −( ) −( ) ≥ = −1 1 2 1

2 1 11
2

1 2 1 1, ( )
(l i)! ! , , , ,

а все остальные элементы равны нулю.
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этом терминальные значения требуемых координат получились следующими: x t f( ) = 1959 4. м, 
y t f( ) = 3052 7. м, z t f( ) = 49 1. м. На рис. 3 помещена зависимость γ р t( ).

Этот результат уже можно использовать для доставки распылителя в окрестность заданной 
точки. Однако с увеличением длины интервала оптимизации траектория модели все больше 
отличается от траектории оптимального эталона.

Далее, алгоритм со спиральным прогнозом применялся из текущего положения ЛА, выда-
вая проекции перегрузки и угловой скорости в ПД-регулятор для введения γ р t( )  в имитаци-
онную модель. Параметры равнялись: ρ1 1= , ρ2 1= , ρ3 40= , k1

2 45 10= ⋅ − , k2
2 35 10= ⋅ − , k3

2 410= − ,  
k4

2 810= − , k5
2 510= − , kp 1 0 02= . , kp 2 0 1= . , kp 3 0 2= . , kp 4 0 02= . , kp 5 0 02= . , kp 6 0 1= . , kp 7 0 2= . ,  

kp 8 0 02= . . Имитационная модель посредством ПД-регулятора приводит ЛА в точку с коорди-

Рис. 3. Зависимость γ р t( ).

Рис. 4. Зависимость t tf ( ).

Рис. 5. Зависимость γ р t( ).

d23 = −( ) − −( )cos sin sin cos sinψ γ ψ γ υΨ Ψ ,

d31 = − + −( ) + −( )sin cos sin sin cos cos cos sin sin cosγ ϑ θ ψ γ θ ψ γ ϑ θΨ Ψ ,

d32 = − − −( ) − −( )sin cos cos sin cos sin cos sin sin sinγ ϑ θ ψ γ θ ψ γ ϑ θΨ Ψ ,

d33 = −( ) − −( )cos cos sin sin sinψ γ ψ γ ϑΨ Ψ

(dij, i j, ,= 1 3, – элементы матрицы Dсв
т ). Эти проекции перегрузки отмечены в  алгоритме 

управления подстрочным индексом s.
Проекции угловой скорости в алгоритме со спиральным прогнозом рассматриваются в свя-

занных осях, а в имитационной модели – в полусвязанной СК. Поэтому ωпс надо перевести в 
ωсв  (т. е. ω ) с помощью матрицы перехода ω ω= Dсв

пс
пс, ω ωx = пс x, ω γ ω γ ωy y z= −cos sinпс пс ,  

ω γ ω γ ωz y z= +sin cosпс пс . Здесь o11 1= , o12 0= , o13 0= , o21 0= , o22 = cos γ, o23 = − sin γ , o31 0= ,  
o23 = sin γ , o33 = cos γ  ( oij, i j, ,= 1 3, – элементы матрицы Dсв

пс ). Эти проекции угловой скорости 
отмечены в алгоритме управления подстрочным индексом s.

Успешность решения задачи сильно зависит от малых маневренных возможностей стабили-
зированного вращением ЛА. Поэтому на носителе перед пуском производится оценка области 
достижимости путем моделирования динамики имитационной модели при различных углах 
поворота блока управления (γ πр ∈[ ]0 2, ). При нахождении ЛА в области управляемости можно 
осуществлять пуск, и алгоритм управления со спиральным прогнозом сформирует оптимальные 
значения перегрузки и угловой скорости, реализация которых посредством ПИД-регулятора 
(СОРЭ) обеспечит доставку реагента в досягаемую точку с допустимой точностью.

Решение задачи управления полетом ЛА выполнялось с использованием предложенного алго-
ритма при следующих начальных условиях: x = −( )270 0 35 0 1250 0 0 0 0 0 0 4000 0.

т, конеч-
ных   условиях x f = 1900 м, y f = 3000 м, z f = 50 м, при d = 0 1. м, S = 0 00785 2. м , Sр м= 0 0016 2. ,  
m = 15 5. кг , I x = 0 0208 2. кг м , I Iy z= = ⋅0 2219 2. кг м , L = 0 49. м , cx = 0 1486. , cx р = 0 0219. ,  
cn

δ = 1 8683. , cy
δ = 1 8146. , mz

δ = 0 2647. , mz
zω = 0 0386. , mx = 0 0001. , mx

xω = −0 0007. , lр м= 0 25. , 
δр = 0 087. . Численное интегрирование уравнений имитационной модели выполнялось мето-
дом Эйлера с шагом 0.0001 с при обращении к алгоритму спирального прогноза для получе-
ния оптимальных значений перегрузок и угловых скоростей через каждые 100 шагов. Время 
счета составило 3 с.

Вначале алгоритм спирального прогноза формировал свою траекторию независимо от ди-
намики модели с выдачей значений проекций перегрузки и угловой скорости для ПД-регу-
лятора, с выхода которого поступали значения, усредненные на интервалах в 20 шагов γ р t( ) , 
в  имитационную модель. Принимались следующие значения параметров критерия опти-
мальности: t tf − =0 7 с, ρ1 0 02= . , ρ2 0 04= . , ρ3 0 04= . , k1

2 310= − , k2
2 210= − , k3

2 410= − , k4
2 810= − ,  

k5
2 310= − , kp 1 0 02= . , kp 2 0 2= . , kp 3 0 2= . , kp 4 0 02= . , kp 5 0 02= . , kp 6 0 2= . , kp 7 0 2= . , kp 8 0 02= . .  

На рис. 2 представлен график t tf ( ), характеризующий изменение величины интервала опти-
мизации для траектории, формируемой с помощью алгоритма со спиральным прогнозом. При 

Рис. 2. Зависимость t tf ( ).
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этом терминальные значения требуемых координат получились следующими: x t f( ) = 1959 4. м, 
y t f( ) = 3052 7. м, z t f( ) = 49 1. м. На рис. 3 помещена зависимость γ р t( ).

Этот результат уже можно использовать для доставки распылителя в окрестность заданной 
точки. Однако с увеличением длины интервала оптимизации траектория модели все больше 
отличается от траектории оптимального эталона.

Далее, алгоритм со спиральным прогнозом применялся из текущего положения ЛА, выда-
вая проекции перегрузки и угловой скорости в ПД-регулятор для введения γ р t( )  в имитаци-
онную модель. Параметры равнялись: ρ1 1= , ρ2 1= , ρ3 40= , k1

2 45 10= ⋅ − , k2
2 35 10= ⋅ − , k3

2 410= − ,  
k4

2 810= − , k5
2 510= − , kp 1 0 02= . , kp 2 0 1= . , kp 3 0 2= . , kp 4 0 02= . , kp 5 0 02= . , kp 6 0 1= . , kp 7 0 2= . ,  

kp 8 0 02= . . Имитационная модель посредством ПД-регулятора приводит ЛА в точку с коорди-

Рис. 3. Зависимость γ р t( ).

Рис. 4. Зависимость t tf ( ).

Рис. 5. Зависимость γ р t( ).

d23 = −( ) − −( )cos sin sin cos sinψ γ ψ γ υΨ Ψ ,

d31 = − + −( ) + −( )sin cos sin sin cos cos cos sin sin cosγ ϑ θ ψ γ θ ψ γ ϑ θΨ Ψ ,

d32 = − − −( ) − −( )sin cos cos sin cos sin cos sin sin sinγ ϑ θ ψ γ θ ψ γ ϑ θΨ Ψ ,

d33 = −( ) − −( )cos cos sin sin sinψ γ ψ γ ϑΨ Ψ

(dij, i j, ,= 1 3, – элементы матрицы Dсв
т ). Эти проекции перегрузки отмечены в  алгоритме 

управления подстрочным индексом s.
Проекции угловой скорости в алгоритме со спиральным прогнозом рассматриваются в свя-

занных осях, а в имитационной модели – в полусвязанной СК. Поэтому ωпс надо перевести в 
ωсв  (т. е. ω ) с помощью матрицы перехода ω ω= Dсв

пс
пс, ω ωx = пс x, ω γ ω γ ωy y z= −cos sinпс пс ,  

ω γ ω γ ωz y z= +sin cosпс пс . Здесь o11 1= , o12 0= , o13 0= , o21 0= , o22 = cos γ, o23 = − sin γ , o31 0= ,  
o23 = sin γ , o33 = cos γ  ( oij, i j, ,= 1 3, – элементы матрицы Dсв

пс ). Эти проекции угловой скорости 
отмечены в алгоритме управления подстрочным индексом s.

Успешность решения задачи сильно зависит от малых маневренных возможностей стабили-
зированного вращением ЛА. Поэтому на носителе перед пуском производится оценка области 
достижимости путем моделирования динамики имитационной модели при различных углах 
поворота блока управления (γ πр ∈[ ]0 2, ). При нахождении ЛА в области управляемости можно 
осуществлять пуск, и алгоритм управления со спиральным прогнозом сформирует оптимальные 
значения перегрузки и угловой скорости, реализация которых посредством ПИД-регулятора 
(СОРЭ) обеспечит доставку реагента в досягаемую точку с допустимой точностью.

Решение задачи управления полетом ЛА выполнялось с использованием предложенного алго-
ритма при следующих начальных условиях: x = −( )270 0 35 0 1250 0 0 0 0 0 0 4000 0.

т, конеч-
ных   условиях x f = 1900 м, y f = 3000 м, z f = 50 м, при d = 0 1. м, S = 0 00785 2. м , Sр м= 0 0016 2. ,  
m = 15 5. кг , I x = 0 0208 2. кг м , I Iy z= = ⋅0 2219 2. кг м , L = 0 49. м , cx = 0 1486. , cx р = 0 0219. ,  
cn

δ = 1 8683. , cy
δ = 1 8146. , mz

δ = 0 2647. , mz
zω = 0 0386. , mx = 0 0001. , mx

xω = −0 0007. , lр м= 0 25. , 
δр = 0 087. . Численное интегрирование уравнений имитационной модели выполнялось мето-
дом Эйлера с шагом 0.0001 с при обращении к алгоритму спирального прогноза для получе-
ния оптимальных значений перегрузок и угловых скоростей через каждые 100 шагов. Время 
счета составило 3 с.

Вначале алгоритм спирального прогноза формировал свою траекторию независимо от ди-
намики модели с выдачей значений проекций перегрузки и угловой скорости для ПД-регу-
лятора, с выхода которого поступали значения, усредненные на интервалах в 20 шагов γ р t( ) , 
в  имитационную модель. Принимались следующие значения параметров критерия опти-
мальности: t tf − =0 7 с, ρ1 0 02= . , ρ2 0 04= . , ρ3 0 04= . , k1

2 310= − , k2
2 210= − , k3

2 410= − , k4
2 810= − ,  

k5
2 310= − , kp 1 0 02= . , kp 2 0 2= . , kp 3 0 2= . , kp 4 0 02= . , kp 5 0 02= . , kp 6 0 2= . , kp 7 0 2= . , kp 8 0 02= . .  

На рис. 2 представлен график t tf ( ), характеризующий изменение величины интервала опти-
мизации для траектории, формируемой с помощью алгоритма со спиральным прогнозом. При 

Рис. 2. Зависимость t tf ( ).
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натами x t f( ) = 1919 7. м, y t f( ) = 3035 8. м, z t f( ) = 48 8. м. На рис. 4, 5 помещены графики t tf ( )  
и  γ р t( )  соответственно.

Итак, предложенное решение позволяет оптимально управлять осесимметричным вращаю- 
щимся ЛА. Использование аналитических выражений для прогнозируемых конечных значе-
ний вектора состояния в модели спирального прогноза дает возможность вычислять управле-
ние на борту в процессе полета. Оптимизация интервала прогнозирования в рассматриваемой 
задаче особенно важна ввиду существенного изменения скорости при отсутствии двигателя.

Заключение. Предложено решение задачи оптимального управления по критерию А. А. Кра-
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