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Рассматривается подход к задаче корректной классификации по прецедентам, основанный на при-
менении логических методов анализа данных. Приводится описание схемы работы моделей логиче-
ских классификаторов, нацеленных на построение специальных фрагментов описаний прецедентов, 
называемых корректными элементарными классификаторами. Более сложные модели, а именно мо-
дели логических корректоров, базируются на синтезе семейств корректных наборов элементарных 
классификаторов. В отличие от классических моделей логические корректоры показывают хорошие 
результаты в случае многозначных признаков, т.е. признаков, имеющих большое число различных 
значений. Изучаются вопросы сокращения временных затрат и повышения качества классификации 
логических корректоров. Предлагаются новые детерминированные и стохастические варианты таких 
моделей, предназначенные для работы с частично упорядоченными данными. Приводятся результа-
ты экспериментов на модельных и реальных данных.
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Введение. Задача корректной классификации на основе прецедентов рассматривается 
в следующей постановке.

Исследуется множество объектов M. Каждый объект этого множества может быть пред-
ставлен в виде числового набора, полученного на основе наблюдения или измерения ряда 
его характеристик x1, ..., xn, называемых признаками. Предполагается, что каждый признак 
имеет ограниченное множество допустимых значений, которые кодируются целыми числами. 
Известно, что M представимо в виде объединения непересекающихся подмножеств K1, ..., Kl, 
l ≥ 2, называемых классами. Имеется конечный набор объектов множества M, про каждый из 
которых известно, какому классу он принадлежит. Это прецеденты, или обучающие объекты. 
Требуется по предъявленному набору значений признаков, описывающему некоторый объект 
из M, определить (распознать) класс, которому принадлежит этот объект.

Логический или дискретный подход к задаче классификации по прецедентам возник в свя-
зи с необходимостью прогнозировать редкие события, для которых нет достаточного статис
тического материала. Фундаментальную роль в создании отечественных методов логической 
классификации сыграли работы член-корр. РАН С.В. Яблонского, в которых введено хорошо 
известное в дискретной математике понятие теста [1], и работы акад. РАН Ю.И. Журавлева, 
опубликованные в 70–80-х гг. прошлого века. Дальнейшее развитие направление получило в 
большом числе публикаций, среди которых статьи [2–4] имеют непосредственное отношение 
к исследованиям, проводимым в данной статье.

При конструировании логических классификаторов большое внимание уделяется вопро-
сам синтеза корректных алгоритмов, т.е. алгоритмов, не ошибающихся на обучающей выбор-
ке. Предполагается, что каждый признак имеет ограниченное множество допустимых зна-
чений, которые кодируются целыми числами. Обучение классификатора сводится к поиску 
в исходных данных информативных фрагментов описаний прецедентов. Такие фрагменты 
позволяют различать объекты из разных классов и, как правило, имеют содержательное опи-
сание в терминах той прикладной области, в которой решается задача. По их наличию или, 
наоборот, отсутствию в описании распознаваемого объекта решается вопрос о его классифи-
кации. В случае большого числа признаков возникают вычислительные трудности, связанные 
с необходимостью решать сложные дискретные задачи.

Основным понятием логического подхода является понятие элементарного классификато-
ра. Пусть Nj, j = 1, n, – множество допустимых значений признака xj; H – набор из r различных 
признаков вида H = {xj1

, ..., xjr}; s = (s1, ..., sr) – набор, в котором si  ∈ Nji при i = 1, r. Пара (s, H) 
называется элементарным классификатором (ЭК) ранга r. ЭК (s, H) может быть задан в виде 
элементарной конъюнкции ( ) ,     & & 1

1

r

rH j jB x xs s
s = …  над переменными x1, ..., xn. Если объект S 

из M имеет признаковое описание (a1, ..., an), в котором aj, j = 1, n, – значение признака xj для 
объекта S, и aji = si при i = 1, r, то говорят, что ЭК (s, H) содержится в объекте S. В этом случае 
интервал истинности конъюнкции B(s, H) содержит S. ЭК называется корректным для класса 
K, K ∈ {K1, ..., Kl}, если не существует двух прецедентов, содержащих данный ЭК, при этом 
один из этих прецедентов принадлежит K, а второй не принадлежит K.

В классических моделях в процессе обучения строятся семейства корректных ЭК. На этапе 
классификации каждый найденный ЭК участвует в процедуре голосования и формирования 
оценок принадлежности распознаваемого объекта к классам. Трудными являются задачи, в 
которых практически каждый корректный ЭК содержится в небольшом числе прецедентов. 
Подобная ситуация возникает, например, в случае, когда признаки имеют много значений. 
В работе [2] предложены модели логических корректоров, в которых используются идеи ал-
гебраического подхода [5–7] к синтезу корректных классификаторов. В данном случае в ка-
честве базовых алгоритмов рассматриваются произвольные ЭК, а в качестве корректирующих 
функций – булевы функции.

Логический корректор основан на построении семейства корректных наборов ЭК. Кор-
ректный для класса K набор ЭК позволяет различать любую пару прецедентов, один из ко-
торых принадлежит классу K, а другой не принадлежит этому классу, поскольку этот набор 
содержит ЭК (s, H), обладающий свойством: конъюнкция B(s, H) принимает разные значе-
ния на данных объектах. Более эффективны модели логических корректоров, использующие 
в качестве корректирующей функции монотонную булеву функцию. Каждый монотонный 
корректор класса K рассматривает только те ЭК, которые содержатся в прецедентах из K.
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Основная проблема, возникающая при синтезе монотонного логического корректора клас-
са K, – это вычислительная сложность этапа обучения, на котором решается задача поиска 
минимальных покрытий булевой матрицы LK значительных размеров. Каждая строка этой 
матрицы порождается парой прецедентов, один из которых принадлежит K, а другой не при-
надлежит K. Число столбцов в LK равно числу тех ЭК, каждый из которых содержится в хотя 
бы одном обучающем объекте класса K. В простейшем случае, а именно когда признаки би-
нарные и рассматриваются только ЭК ранга 1, число столбцов в LK равно 2n, где n – число 
признаков. В работе [3] построена и исследована модель логического корректора с монотон-
ными корректными наборами ЭК ранга 1 и с применением генетического алгоритма для по-
иска минимальных покрытий матрицы LK.

Для сокращения временных затрат в случае бинарных данных в работе [2] предложено 
осуществлять поиск монотонных корректных наборов из ЭК ранга 1 на основе построения 
специального вида покрытий булевой матрицы с тем же числом строк, что и в LK, и с числом 
столбцов, равным числу признаков n. Однако в работе [2] не было приведено эксперимен-
тальных данных, подтверждающих существенное сокращение перебора. Эта идея обобщена 
в настоящей работе на случай целочисленных данных. Проведенные исследования показали 
эффективность подхода. Рассмотрены вопросы разработки стохастических моделей логиче-
ских корректоров и модификации этих моделей на случай, когда на множествах значений 
признаков заданы конечные частичные порядки, т.е. признаковые описания прецедентов – 
это элементы декартова произведения конечных частичных порядков. Классические модели 
логических классификаторов над произведением частичных порядков впервые построены в 
работе [8].

1. Логические классификаторы: принципы работы и основные модели. Среди классических 
моделей логических классификаторов хорошие результаты на данных с малой значностью 
признаков показывают модели, в которых в качестве корректных ЭК рассматриваются пред-
ставительные ЭК классов.

ЭК (s, H) называется представительным для класса K, K  ∈ {K1, ..., Kl}, если (s, H) содержит-
ся в хотя бы одном прецеденте из K и не содержится ни в каком прецеденте не из K. Понятие 
представительного ЭК введено в работе [9]. Согласно общей схеме работы рассматриваемых 
моделей [10], на этапе обучения задается некоторый частичный порядок на множестве P(K) 
представительных ЭК класса K и ищутся максимальные относительно заданного порядка эле-
менты этого множества.

Пусть на P(K) установлен порядок, согласно которому ЭК (s′, H ′) следует за ЭК (s, H), 
если интервал истинности конъюнкции B(s′, H ′) содержит интервал истинности конъюнкции 
B(s, H). Иначе (s′, H ′) и (s, H) несравнимы. Тогда максимальные элементы частично упорядо-
ченного множества P(K) называются тупиковыми представительными ЭК.

Решающее правило основано на процедуре “голосования”, в которой участвуют найденные 
представительные ЭК классов [11]. Процедура “голосования” заключается в следующем. Если 
представительный ЭК (s, H) класса K содержится в распознаваемом объекте S, то (s, H) дает 
положительную оценку ГK(S, s, H) за принадлежность S к классу K, которая равна числу пре-
цедентов, содержащих (s, H). В противном случае ( )s =Г , , 0K S H . Оценки, поданные пред-
ставительными ЭК класса K за принадлежность S к этому классу, суммируются, и суммарная 
оценка делится на число прецедентов класса K. Объект S относится к классу, получившему 
наибольшую оценку. Если таких классов несколько, то происходит отказ от распознавания 
объекта S.

Корректность алгоритма обеспечивается за счет корректности каждого участвующего в го-
лосовании представительного ЭК. Основная задача этапа обучения – поиск информативных 
представительных ЭК. Практика показывает, что наиболее информативными являются пред-
ставительные наборы небольшого ранга, в частности тупиковые. Задачи, в которых значность 
признаков высока, сложны для классических логических алгоритмов распознавания, по-
скольку каждый корректный ЭК содержится в небольшом числе прецедентов. Существуют 
различные способы решения этой проблемы.

Один из этих способов заключается в выполнении “корректной” перекодировки исходных 
признаков с целью понизить их значность [12]. В результате после перекодирования объекты 
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из разных классов остаются различимыми. Основная проблема – выбор функционала, харак-
теризующего качество перекодировки. Построение наилучшей в смысле качества распознава-
ния корректной перекодировки – труднорешаемая  оптимизационная задача. Другой способ 
основан на идеях алгебрологического подхода, который был предложен в работе [2]. Этот под-
ход базируется на использовании произвольных ЭК (не обязательно являющихся корректны-
ми) и объединяет идеи логического и алгебраического подходов.

Алгебраический подход, развиваемый школой Ю.И. Журавлева, применяется тогда, когда 
требуется скорректировать работу нескольких распознающих алгоритмов, каждый из кото-
рых безошибочно классифицирует лишь часть обучающих объектов [5–7]. Цель коррекции – 
сделать так, чтобы ошибки одних алгоритмов были скомпенсированы другими алгоритмами 
и качество результирующего алгоритма оказалось лучше, чем качество каждого из базовых 
алгоритмов в отдельности. Об алгебрологическом подходе говорят, когда каждый базовый ал-
горитм однозначно определяется некоторым ЭК и корректирующие функции являются буле-
выми. Следует отметить, что в ряде работ термин “логический корректор” используется также 
в случае, когда работа семейства некорректных эвристических процедур классификации кор-
ректируется логической функцией (например, см. [7]).

Основным понятием алгебрологического подхода является понятие корректного набора 
ЭК. Рассмотрим набор ЭК U = {(s1, H1), ..., (sr , Hr)}. Обозначим через B(si, Hi)(S), i = 1, r, S ∈M, 
S = (a1, ..., an), значение, которое принимает конъюнкция B(si, Hi) на наборе (a1, ..., an). Бинарный 
вектор U(S) = {B(s1, H1)(S), ..., B(sr , Hr)(S)} – отклик набора U на объекте S. Набор U называется 
корректным для класса K, если не существует двух прецедентов с одинаковыми откликами на 
этом наборе и таких, что один из них принадлежит K, а другой не принадлежит K. Коррект-
ный для класса K набор ЭК называется тупиковым, если никакое его собственное подмноже-
ство не является корректным для класса K набором ЭК.

Нетрудно видеть, что для корректного набора U всегда существует частичная булева функ-
ция, выполняющая роль корректирующей функции. Эта функция определена на откликах 
прецедентов и принимает значение 1, если прецедент из K, и принимает значение 0 в осталь-
ных случаях. Особо следует отметить корректные наборы ЭК, имеющие монотонную булеву 
функцию в качестве корректирующей функции и называемые монотонными. Очевидным яв-
ляется следующее утверждение.

Утверждение 1. Набор ЭК U = {(s1, H1), ..., (sr , Hr )} – монотонный корректный набор для 
класса K тогда и только тогда, когда для любых двух обучающих объектов S ′ и S ″ таких, что 
S ′ ∈ K, S ″ ∉ K, можно указать i в {1, 2, ..., r }, такое, что B(si, Hi)(S ′) = 1 и B(si, Hi)(S ″) = 0.

Требование монотонности можно убрать, если условие утверждения 1 заменить на условие 
( ) ( ) ( ) ( ), ,i i i iH HB S B Ss s≠′ ′′ .

Модели алгоритмов распознавания, основанные на построении корректных наборов ЭК, 
получили название логических корректоров.

При распознавании объекта S процедура голосования по корректному набору ЭК U за-
ключается в следующем. Для каждой пары объектов (S, S ′), где S ′ ∈ K, выписываются отклики 
U(S ) и U(S ′) этих объектов на наборе U. Объект S не получает голос за принадлежность классу 
K, если не выполнено U(S ′)  U(S ) (здесь и далее запись U(S ′)  U(S ) означает, что каждая 
координата вектора U(S ′) не превосходит соответствующую координату вектора U(S)). Если 
U – монотонный корректный набор ЭК класса K и  U(S ′)  U(S ), то объект S получает голос 
за принадлежность классу K. Если же U не является монотонным корректным набором ЭК 
класса K, то S получает голос за принадлежность к классу K только в случае U(S ′) = U(S ). Ре-
шение прикладных задач показало, что монотонный логический корректор работает лучше 
логического корректора с немонотонной корректирующей функцией.

На этапе построения семейств тупиковых корректных наборов ЭК, а также при построе-
нии процедур, основанных на голосовании по тупиковым представительным ЭК, приходится 
решать сложные дискретные задачи. Труднорешаемость этих задач обусловлена экспоненци-
альным ростом числа решений с ростом размера задачи и сложностью нахождения каждого 
нового решения. Одна из основных – монотонная дуализация. Задача допускает несколько 
формулировок. Ниже приведена ее матричная формулировка [13].

Пусть L – произвольная булева матрица. Набор различных столбцов W матрицы L называ-
ется покрытием, если каждая строка матрицы L в пересечении хотя бы с одним из столбцов, 
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входящих в W, даст 1 (т.е. в подматрице матрицы L, образованной столбцами из W, не долж-
но быть строк вида (0,…,0)). Покрытие с минимальным числом столбцов называется мини-
мальным. Покрытие называется неприводимым, если никакое его собственное подмножество 
не является покрытием. Неприводимость покрытия означает, что в подматрице матрицы L, 
образованной столбцами набора W, должна быть каждая из строк (1, 0, 0,…, 0, 0), (0, 1, 0,…, 
0, 0),…, (0, 0, 0,…, 0, 1). Требуется перечислить все неприводимые покрытия матрицы L. Ал-
горитмы перечисления неприводимых покрытий булевой матрицы применяются для поиска 
минимальных покрытий.

Другие формулировки монотонной дуализации используют понятия теории булевых функ-
ций (дуализация монотонной конъюнктивной нормальной формы) и понятия теории графов 
(дуализация гиперграфа) [14]. Задача имеет много важных приложений. Среди алгоритмов 
монотонной дуализации наиболее эффективны асимптотически оптимальные алгоритмы. Ли-
дирующую позицию занимает алгоритм RUNC-M [13].

Как правило, даже для задач небольшой размерности процедура построения корректных 
наборов ЭК требует значительных вычислительных ресурсов. В простейших моделях логи-
ческих корректоров для снижения вычислительной сложности используются ЭК ранга 1. 
При этом среди корректных наборов с ЭК, имеющими ранг, отличный от 1, могут оказаться 
наиболее информативные. В связи с этим для рассматриваемой задачи представляет интерес 
разработка не только точных, но и приближенных алгоритмов, например генетических и сто-
хастических. Последние исследования в данной области посвящены также вопросам повы-
шения качества решения прикладных задач на основе расширения класса корректирующих 
функций [4] и вопросам применения нейросетевых технологий [15].

Прикладные задачи классификации не всегда могут быть описаны в рамках классической 
постановки логической классификации, когда отдельные значения признака сравниваются с 
использованием простого отношения равенства. Довольно часто встречаются задачи класси-
фикации, в которых каждый признак принимает значения из некоторого частично упорядо-
ченного множества. В работе [8] предложена схема синтеза корректных классических моделей 
логических алгоритмов распознавания при условии, что на множествах значений целочис-
ленных признаков заданы конечные частичные порядки и признаковые описания изучаемых 
объектов – элементы декартова произведения заданных порядков. Фактически обобщены 
базовые понятия, используемые при логическом анализе целочисленных данных в задаче 
классификации по прецедентам, и приведены условия корректности основных логических 
процедур классификации. Аналогичным образом могут быть построены и логические коррек-
торы над произведением частичных порядков. В условии содержания ЭК (s, H), H = {xj1, ..., xjr}, 
s = (s1, ..., sr), в объекте S, S = (a1, ..., an), следует заменить знак равенства на знак следования. 
Тогда соответствующее определение будет следующим: ЭК (s, H) содержится в объекте S, если 
aji  si  при i = 1, r. Остальные введенные выше определения полностью сохраняются. Так же, 
как и в классическом случае (случае антицепей), для существования корректных наборов ЭК 
необходимо, чтобы описания объектов из разных классов были несравнимы.

2. Построение монотонных логических корректоров с ЭК ранга 1. Каждый (монотонный) 
корректный набор ЭК для класса K однозначно соответствует покрытию булевой матрицы 
LK, построенной следующим образом по прецедентной информации.

Выпишем всевозможные ЭК, каждый из которых содержится в хотя бы одном обучающем 
объекте класса K. Пусть это будет множество ЭК {Q1, ..., Qu}. Тогда каждой строке в LK соот-
ветствует пара прецедентов S ′ и S ″ таких, что S ′ ∈ K, S ″ ∉ K, а каждому столбцу соответствует 
один из ЭК Q1, ..., Qu. На пересечении строки и столбца, порождаемых парой объектов (S ′, S ″) 
и ЭК Qj,  j = 1, u, ставится 1, если BQ j(S ′) = 1 и BQ j(S ″) = 0, т.е. Qj содержится в S ′ и не содержит-
ся в S ″, иначе ставится 0. Нетрудно видеть, что набор ЭК является монотонным (тупиковым) 
корректным набором для K тогда и только тогда, когда соответствующий набор столбцов мат-
рицы LK является (неприводимым) покрытием.

Как правило, даже для задач небольшой размерности процедура перечисления монотонных 
тупиковых корректных наборов ЭК (МТК-наборов) для класса K с использованием матрицы 
LK требует значительных вычислительных ресурсов, в связи с чем встает вопрос о разработке 
эффективных методов решения задач алгебрологической коррекции как в общем случае, так 
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и в следующих практически важных случаях: 1) каждый МТК-набор состоит из ЭК ранга 1; 
2) в условиях задачи 1 на множестве Nj, j = 1, n, допустимых значений признака xj задан частич-
ный порядок и считается, что ЭК (s, {xj}) содержится в объекте S, S = (a1, ..., an), если aj  s. 
В каждом из перечисленных случаев требуется разработка не только точных, но и приближен-
ных методов решения задачи, что может оказаться необходимым для увеличения скорости ее 
решения.

Рассмотрим задачу перечисления МТК-наборов для класса K, порождаемых ЭК ранга 1 
при условии, что каждое из множеств Nj, j = 1, n, – антицепь, т.е. любые два элемента в Nj 
несравнимы. Пусть m1 – число прецедентов класса K, m2 – число прецедентов не из класса K.

Нетрудно видеть, что в подматрице матрицы LK = (aij), i = —1,—m1
——m2, j = 1, 2n, образованной 

сравнением прецедента класса K с прецедентами из других классов, имеется максимум n не-
нулевых столбцов. Покажем, что указанное свойство матрицы LK можно использовать для 
сокращения временных затрат при поиске МТК-наборов для класса K и искомый поиск мо-
жет быть осуществлен на основе построения специальных наборов столбцов целочисленной 
матрицы с числом строк, равным числу строк матрицы LK и с числом столбцов, равным n.

Элементы ai1 j1 и ai2 j2 матрицы LK назовем совместимыми, если i1 ≠ i2, j1 ≠ j2, ai1 j1 = ai2 j2 = 1 и 
ai1 j1 = ai2 j2 = 0. Набор U из r единичных элементов матрицы LK называется совместимым, если 
выполнено одно и следующих условий: 1) r  = 1; 2) r  ≥ 2 и любые два элемента набора U сов-
местимы.

Построим матрицу MK = (bij), i = —1,—m1
——m2, j = 1, 2n, образованную путем сравнения прецеден-

тов класса K с прецедентами из других классов. Каждой строке этой матрицы соответствует 
пара прецедентов вида (Si, Su), где Si  ∈ K, Su  ∉ K. При этом если Si содержит ЭК (s, {xj}), а  Su 
не содержит этот ЭК, то в строке, порождаемой парой (Si, Su), в столбце с номером j ставится 
s + 1, иначе ставится 0.

Элементы bi1 j1 и bi2 j2 матрицы MK называются совместимыми, если i1 ≠ i2, bi1 j1 ≠ 0, bi2 j2 ≠ 0 и 
дополнительно выполнено одно из двух следующих условий: 1) j1 ≠ j2 и bi2 j1 ≠ bi1 j1, bi1 j2 ≠ bi2 j2; 
2) j1 = j2, bi1 j1 ≠ bi2 j2. Набор V из r ненулевых элементов матрицы MK называется совместимым, 
если выполнено одно из следующих условий: 1) r  = 1; 2) r  ≥ 2 и любые два элемента набора V 
совместимы.

Заметим, что существует взаимно однозначное соответствие между ненулевыми элемента-
ми матриц LK и MK, при котором каждому единичному элементу e матрицы LK, расположен-
ному в строке с номером i и столбце, порожденном ЭК (s, {xj}), соответствует элемент s + 1 
матрицы MK, расположенный в строке с номером i и столбце с номером j, обозначаемый далее 
П(e).

Утверждение 2. Единичные элементы e1 и e2 совместимы в LK тогда и только тогда, когда 
элементы П(e1) и П(e2) совместимы в MK.

Доказательство. Пусть e1 и e2 – элементы матрицы LK, такие, что e1 = e2 = 1 и элемент et, 
t  ∈ (1, 2), расположен в строке с номерами it и столбце, порожденном ЭК (st, {xjt}). Обозначим 
через et + 2, t  ∈ (1, 2), элемент в LK, расположенный в строке с номером it и в столбце, порож
денном ЭК (s, {xj}), в котором s = s2, j = j2 при t  = 1 и s = s1, j = j1 при t  = 2.

I. Пусть элементы e1 и e2 совместимы в матрице LK и элемент et, t  ∈ (1, 2), расположен в 
строке с номерами it и столбце, порожденном ЭК (s, {xj}). Предположим, что элементы П(e1) 
и П(e2) не совместимы в MK. Тогда в случае j1 ≠ j2 получаем, что хотя бы один из элементов e3 
и e4 не равен 0. Если же j1 = j2, то s1 = s2, т.е. элементы e1 и e2 расположены в одном и том же 
столбце матрицы LK. Таким образом, в обоих случаях возникает противоречие с тем, что e1 и 
e2 совместимые в LK элементы.

II. Пусть элементы П(e1), П(e1) = s1 + 1, и П(e2), П(e2) = s2 + 1, совместимы в матрице MK и 
расположены в строках i1 и i2 соответственно. Тогда e1 = e2 = 1.

Предположим, что элементы e1 и e2 не совместимы в LK и j1 ≠ j2. Это означает, что выпол-
нено хотя бы одно из двух равенств e3 = 1 и e4 = 1, где et + 2, t  ∈ {1, 2}, – элемент в LK, располо-
женный в строке с номером it и в столбце, порожденном ЭК (s,{xj}), в котором s = s2, j = j2 
при t = 1 и s = s1, j = j1 при t  = 2. Если, например, e3 = 1, то П(e3) = П(e2) = s2 + 1. Противоречие 
с условием совместимости элементов П(e1) и П(e2).

Допустим, что элементы e1 и e2 не совместимы в LK и j1 = j2 = j. Тогда существует t  ∈ (1, 2), 
такое, что на пересечении строки с номером it матрицы LK со столбцами, порождаемыми ЭК 
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(s1,{xj}) и (s2,{xj}), стоит число 1, что недопустимо при s1 ≠ s2. Следовательно, s1 = s2. Проти-
воречие с условием совместимости элементов П(e1) и П(e2).

Утверждение 2 доказано.
Пусть {s1, ..., sr} – совместимый набор элементов матрицы MK, в котором st, – элемент 

столбца с номером jt, и пусть H – набор столбцов с номерами j1, ...,  jr . Через  ∼H обозначим 
набор из всех различных столбцов, встречающихся в H. Будем говорить, что H – (s1, ..., sr) 
(s1, ..., sr) – совместимый набор столбцов. Будем считать, что для H выполнено условие по-
крываемости, если подматрица MK

H матрицы MK, образованная столбцами из  ∼H, не содержит 
строк вида (0,…,0). Назовем H корректным (s1, ..., sr) покрытием для MK, если для H выполне-
но условие покрываемости. Корректное покрытие матрицы MK, имеющее наименьшее число 
столбцов, назовем минимальным. Согласно утверждению 2, существует взаимно однозначное 
соответствие между множеством корректных покрытий матрицы MK и множеством неприво-
димых покрытий матрицы LK. Следовательно, для синтеза МТК-наборов класса K могут быть 
применены алгоритмы построения корректных покрытий матрицы MK, а для синтеза мини-
мальных по мощности МТК-наборов класса K могут быть применены алгоритмы построения 
минимальных корректных покрытий матрицы MK.

Для перечисления корректных покрытий матрицы MK авторами построен алгоритм АЛКОР. 
Ниже приведена схема работы этого алгоритма.

Предположим, что C(MK) – множество всех совместимых наборов столбцов матрицы MK 
и пусть H ∈ C(MK). Столбец h матрицы MK совместим с H, если набор столбцов H ∪ h принад-
лежит C(MK), иначе h несовместим с H. Если в матрице MK не существует столбца, совмести-
мого с H, то H – максимальный совместимый набор столбцов этой матрицы. Допустим, что 
C *(MK) – множество всех максимальных совместимых наборов столбцов матрицы MK.

Для наглядности работу алгоритма АЛКОР можно представить в виде обхода дерева ре-
шений (ДР) в глубину. Корень ДР – пустой набор, вершина ДР – набор из C(MK), висячая 
вершина ДР – набор из C *(MK), которая либо являются корректными покрытием матрицы 
MK, найденным впервые, либо соответствует лишнему шагу.

Первоначально матрица MK рассматривается в качестве текущей матрицы. Построение 
ДР начинается с вершины, которая порождается некоторым ненулевым столбцом с номером 
j1 матрицы MK и некоторым ненулевым элементом s1 этого столбца. Далее в роли текущей 
матрицы выступает подматрица матрицы MK, полученная описанным ниже способом. Для 
построения дочерней вершины для вершины (s1,  j1) алгоритм по определенному правилу вы-
бирает в текущей матрице ненулевой столбец с номером j2 и элемент s2 этого столбца, совме-
стимый с элементом s1. Строится новая вершина (s2,  j2). При этом возможно, что j1 = j2. После 
построения очередной вершины (sr,  jr), r  ≥ 1, порождаемой (s1, ..., sr)-совместимым набором 
столбцов H матрицы MK, текущая матрица изменяется следующим образом. Из нее удаляются 
все строки, дающие sr в пересечении со столбцом с номером jr .

Алгоритм АЛКОР применяет “жадную” стратегию выбора столбцов для построения до-
черних вершин в ДР. Всякий раз после построения очередной вершины (sr,  jr), r  ≥ 1, в новой 
текущей матрице среди строк с наименьшим числом ненулевых элементов выбирается строка 
с наименьшим номером. Далее среди столбцов, которые в пересечении с выбранной строкой 
дают отличные от 0 элементы, ищется столбец с наименьшим номером jr + 1, такой, что нену-
левой элемент sr +1 этого столбца, расположенный в выбранной строке, совместим с текущим 
совместимым набором {s1, ..., sr} элементов матрицы MK. Если указанный столбец найти не 
удается, то вершина (sr ,  jr) становится висячей. Далее либо происходит переход к новому шагу 
путем возврата на более высокий уровень ДР, либо алгоритм заканчивает работу. В против-
ном случае (sr ,  jr) – внутренняя вершина ДР, процесс построения текущей ветви дерева про-
должается, и строится новая вершина (sr + 1,  jr + 1). Если можно выбрать только один столбец, 
обладающий названными выше свойствами, то (sr + 1,  jr + 1) – концевая вершина.

Пусть висячая вершина (sr ,  jr) порождает максимальный (s1, ..., sr)-совместимый набор 
столбцов H матрицы MK. В  этом случае для H проверяется условие покрываемости. Если 
условие покрываемости для H выполнено, то множество корректных покрытий матрицы MK, 
построенных на предыдущих шагах, пополняется добавлением к нему набора столбцов H, в 
противном случае это множество не меняется. Алгоритм заканчивает работу, если каждая из 
вершин (si, ji), i = 1, r, является концевой вершиной.
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Таким образом, число шагов алгоритма АЛКОР равно числу висячих вершин в ДР. Слож-
ность шага алгоритма O(qm1m2 n), q = min(m1, n).

Схема работы алгоритма АЛКОР близка к схеме работы асимптотически оптимального 
алгоритма перечисления неприводимых покрытий булевой матрицы RUNC-M [13]. В на-
стоящей работе на базе алгоритмов RUNC-M и АЛКОР построены алгоритмы RUNC-M+ и 
АЛКОР+, осуществляющие соответственно поиск минимальных покрытий матрицы LK и ми-
нимальных корректных покрытий матрицы MK . В этих алгоритмах добавлена текущая пере-
менная, фиксирующая минимальное число столбцов в найденных покрытиях.

В случае, когда на каждом множестве Nj, j = 1, n, допустимых значений признака xj задан 
частичный порядок, применялся аналогичный подход. Проведены эксперименты, показав-
шие эффективность предложенной методики решения поставленных задач. В экспериментах 
при решении реальных задач рассматривался специальный линейный порядок, учитывающий 
частоту встречаемости значения признака в описаниях прецедентов [16].

3. Результаты экспериментов. Выполнены эксперименты на случайных модельных бинар-
ных данных с равновероятным появлением 0 и 1, с равномощными непересекающимися клас-
сами K1 и K2, с числом прецедентов m и числом признаков n. В табл. 1 приведено среднее 
время (по 20 запускам) поиска минимальных покрытий матрицы LK, K  ∈ {K1, K2}, алгоритмами 
RUNC-M+ и АЛКОР+. Время счета указано в секундах. Дополнительно указано среднее чис-
ло минимальных покрытий q.

Из результатов, представленных в табл. 1, следует, что алгоритм АЛКОР+ работает суще-
ственно быстрее алгоритма RUNC-M+ в случае, когда m << n. В среднем при n  ≥ 100 время 
счета алгоритма RUNC-M+ в 6.5 раз больше, а при n  < 100 – в 3.5 раза. Проведены также 
аналогичные эксперименты с фиксированным числом признаков, равным 20, и с числом пре-
цедентов, меняющимся от 40 до 200, которые показали, что по времени счета АЛКОР+ незна-
чительно уступает RUNC-M+ (до 1.5 раз).

Выполнены эксперименты на пяти реальных задачах с двумя классами, содержащих как 
бинарные признаки, так и целочисленные признаки высокой значности. Одна задача (“tic-
tac-toe”) была взята из репозитория UCI [17], а остальные – из репозитория ФИЦ ИУ РАН 
[11]. Тестирование новой модели монотонного логического корректора (МКОР), проводилось 
с линейными порядками на множествах значений признаков, согласно частоте встречаемо-
сти каждого значения [16]. Исходная обучающая выборка 10 раз разбивалась на обучение и 
контроль в соотношении 80 и 20%. Качество классификации оценивалось двумя функциона-
лами:  1 2 1 2( ) / ( )Q m m m m= + +   – средняя точность и ( ) 1 1 2 21 / 2 / /bQ m m m m= +   – сбалансиро-
ванная точность, где mi, i ∈ {1, 2}, – число контрольных объектов класса Ki, а im  – число верно 
классифицированных контрольных объектов класса Ki . Для задачи “tic-tac-toe” указаны ре-
зультаты счета при поиске всех неприводимых покрытий в LK, так как в LK всегда было найде-
но только одно минимальное покрытие. Результаты счета представлены в табл. 2, в которой 
указаны также среднее число найденных покрытий q и максимальная значность признака k.

Таблица 1. Эффективность алгоритмов RUNC-M+ и АЛКОР+ на модельных данных

Номер задачи
Размер задачи

RUNC-M+ АЛКОР+
m × n

1 20 × 40 76.2 0.9 0.4
2 20 × 60 104.2 6.7 2.6
3 20 × 80 169 24.2 3.6
4 20 × 100 269.4 96.9 10.6
5 20 × 120 861.3 115.1 17.7
6 20 × 140 397 150.9 20.9
7 20 × 160 422.6 137.1 24.7
8 20 × 180 642.8 256.4 42.3
9 20 × 200 1131.3 409.3 61.3
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Из полученных результатов следует, что алгоритм АЛКОР+ работает быстрее алгоритма 
RUNC-M+, причем существенно быстрее на задачах с большим числом признаков. Время 
счета в секундах указано в последних двух столбцах табл. 2.

В табл. 3 приведены результаты сравнения качества алгоритма МКОР с такими известны-
ми алгоритмами, как Random Forest (RF), бустинг над решающими деревьями (LADTree), 
наивный байес (NB), алгоритм голосования по всем тупиковым представительным ЭК (ГТП) 
и модификация алгоритма ГТП, в которой “голосуют” тупиковые представительные ЭК с не-
большим рангом (ГТП+). При счете использовалась авторская реализация алгоритмов ГТП и 
ГТП+. Алгоритмы RF, LADTree и NB были взяты из системы WEKA [18].

Согласно результатам, представленным в табл. 3, качество алгоритма МКОР сопоставимо с 
другими тестируемыми классификаторами, а на задачах “tic-tac-toe” и “sigapur” МКОР лиди-
рует. При этом качество МКОР на большинстве задач выше качества ГТП, особенно в случае 
задач с высокой значностью признаков.

На задаче “insult” проведено исследование стохастического варианта классификатора 
МКОР (табл. 4). Для каждого из 10 случайных разбиений исходной выборки на обучение и 
контроль в соотношении 80 и 20% на вход w раз подавался случайный набор из p различ-
ных столбцов матрицы MK. Значение параметра w варьировалось от 20 до 200 с шагом 20 и 
рассматривалось два значения параметра p, а именно p1 = 0.2n и p2 = 0.25n. Для каждых p и w 
учитывались все найденные минимальные покрытия. В табл. 4 также указано среднее время 
счета t в миллисекундах и среднее число покрытий q по 10 разбиениям исходной выборки.

Таблица 2. Эффективность алгоритма МКОР на реальных данных

Описание задачи
 q Q/Qb RUNC-M+ АЛКОР+

Название m × n (k)
insult 79 × 81 (2) 351.2 0.69/0.55 10467.8 1361.6

tic-tac-toe 958 × 9 (3) 112.8* 0.99/0.99 7.4 5.7
dorovski 33 × 12 (33) 1297.8 0.60/0.60 2086.3 351.9

input 344 × 9 (11) 1220.2 0.95/0.94 60989.4 14538.7
sigapur 58 × 15 (58) 34 0.98/0.99 1.1 0.05

Таблица 3. Показатели качества тестируемых классификаторов

Название 
задачи

МКОР
Q/Qb

RF
Q/Qb

LADTree
Q/Qb

NB
Q/Qb

ГТП
Q/Qb

ГТП+
Q/Qb

insult 0.69/0.55 0.79/0.55 0.64/0.49 0.76/0.55 0.68/0.50 0.76/0.58
tic-tac-toe 0.99/0.99 0.95/0.93 0.76/0.70 0.64/0.71 0.69/0.56 0.69/0.56
dorovski 0.60/0.60 0.50/0.50 0.63/0. 66 0.57/0.56 0.53/0.53 0.69/0.69

input 0.95/0.94 0.97/0.97 0.96/0.96 0.99/0.99 0.64/0.50 0.64/0.50
sigapur 0.98/0.99 0.97/0.93 0.94/0.94 0.94/0.91 0.82/0.50 0.82/0.50

Таблица 4. Эффективность стохастического варианта алгоритма МКОР на задаче “insult”

w
p = p1 p = p2

Q/Qbalance t, мс q Q/Qbalance t, мс q
20 0.76/0.51 18.1 56 0.80/0.51 230.3 250.2
40 0.81/0.54 17.4 162.7 0.81/0.51 230.9 692.3
60 0.74/0.51 14.3 53.3 0.78/0.48 338.8 588.9
80 0.78/0.53 11.2 131.1 0.79/0.49 465.5 682.5

100 0.78/0.52 22.4 186.8 0.81/0. 49 582.2 1248.5
120 0.78/0.53 17.2 126.5 0.78/0.48 1377.7 1159.1
140 0.78/0.49 26.4 245.2 0.79/0.49 527.2 1378.8
160 0.79/0.51 62.5 244.9 0.81/0. 51 1075.9 1612.3
180 0.79/0.48 33.9 267.4 0.81/0.50 896.4 2553.5
200 0.790/0.50 42.6 237.7 0.81/0.50 1459.9 2454.9



 ГЕНРИХОВ, ДЮКОВА

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 1 2025

72

Нетрудно видеть, что при p = p1 стохастический вариант алгоритма МКОР показывает схо-
жие результаты с детерминированным вариантом по функционалу Qb и лучшие результаты 
по функционалу Q. Время стохастического поиска существенно меньше (в среднем в 40 тыс. 
раз). При увеличении w качество стохастического алгоритма немного снижается, при этом 
увеличивается время счета (в среднем в 3 раза). При увеличении параметра p качество стоха-
стического алгоритма немного снижается по функционалу Qb, но существенно увеличивается 
время счета (в среднем в 25 раз).

Таким образом, проведенные эксперименты свидетельствуют о целесообразности примене-
ния алгоритма АЛКОР+ для построения монотонного логического корректора с ЭК ранга 1. 
Установлено, что снижение временных затрат особенно заметно, когда число признаков су-
щественно больше числа обучающих объектов. Показано, что предлагаемый стохастический 
классификатор не уступает по качеству своему детерминированному варианту и работает на 
реальных задачах в тысячи раз быстрее.

Заключение. Рассмотрены вопросы повышения эффективности логического подхода к ре-
шению задачи корректной классификации по прецедентам. Разработаны и экспериментально 
исследованы новые более совершенные детерминированные и стохастические модели моно-
тонных логических корректоров, предназначенные в том числе на обработку частично упоря-
доченных данных и позволяющие существенно сократить временные затраты этапа обучения.
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