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Рассматривается задача поиска рациональных решений многоэкстремальной параметрической 
задачи методом муравьиных колоний. Рациональные решения – это решения, близкие по значению 
целевой функции к оптимальному, но не обязательно являющиеся таковыми. Для решения много-
экстремальной задачи предложена модификация метода муравьиных колоний, которая не сходится к 
одному решению, а продолжает его поиск. Отсутствие сходимости к одному решению преодолевает 
проблему стагнации предложенного в работе алгоритма метода муравьиных колоний. Найденные ре-
шения сохраняются в хэш-таблице, что позволяет избежать повторного вычисления значения целе-
вой функции для уже вычисленного решения на вычислителе и осуществить поиск нового решения 
для каждого агента. Описана новая формула определения вероятности перехода муравья (агента) к 
новому параметру. Задачей данной формулы является решение проблемы стагнации алгоритма на 
ранних итерациях путем увеличения вероятности посещения агентом еще нерассмотренных компо-
нентов решений. Алгоритм данной модификации метода муравьиных колоний позволяет решать 
дискретные параметрические задачи, определять рациональные значения параметров из дискретно-
го множества. Изучается зависимость эффективности работы метода от параметров предложенной 
модификации метода муравьиных колоний. Исследование на тестовых задачах и задачах большой 
размерности показало зависимость от параметров аддитивной свертки и коэффициента испарения, 
отвечающего за уменьшение весов, которые получены на прошлых итерациях.
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The problem of finding rational solutions to a multi-extremal parametric problem using the ant colony 
method is considered. Rational solutions are solutions that are close to the optimal one in terms of the value 
of the objective function, but are not necessarily such. To solve for a multi-extreme problem, a modification 
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of the ant colony method is proposed, which does not converge to a single solution, but continues to search 
for a solution. The ant colony method underlying the modification allows one to consider all rational solutions 
at the earliest iterations. The lack of convergence to a single solution solves the problem of stagnation of the 
proposed algorithm of the ant colony method. The solutions considered are stored in a hash table, which 
allows avoiding recalculation of the value of the objective function for a given solution on the computer and 
searching for a new solution for each agent. A new formula for determining the probability of the ant’s (agent’s) 
transition to a new parameter. The purpose of this formula is to solve the problem of algorithm stagnation 
in early iterations by increasing the probability of the agent visiting components of solutions that have not 
yet been considered. The algorithm of this modification of the ant colony method allows solving discrete 
parametric problems, determining rational values of parameters from discrete set. The paper investigates the 
dependence of the efficiency of the method on the parameters of the proposed modification of the ant colony 
method. The study on test problems and large-scale problems showed the dependence on the parameters 
of the additive convolution and the evaporation coefficient, which is responsible for reducing the weights 
obtained in previous iterations.

Keywords: parametric problem, ant colony method, objective function, hyperparameters, hash table

Введение. В настоящее время с развитием вычислительных кластеров и систем возможно 
перенести множество расчетных и оптимизационных задач с человека-эксперта на 
вычислительные машины. Программное обеспечение, такое как Ansys и CATIA и др., обес-
печивает автоматизацию расчетов, которые ранее выполнялись вручную инженерами. Даль-
нейшее развитие систем позволяет решать больший спектр задач и проводить параллельные 
вычисления. Обычно оптимизационную задачу по определению оптимальных параметров 
системы выполняет инженер, используя итеративный процесс: задание параметров системы, 
расчеты на вычислительном устройстве, получение значений критериев от программы. Если 
критерии не удовлетворяют требованиям, то производится эмпирический анализ зависи-
мостей и повторные расчеты. Данный циклический процесс происходит до тех пор, пока 
значения критериев не удовлетворят инженера.

Дальнейшее развитие предполагает автоматизацию процессов оптимизации различными 
методами. С использованием параллельных вычислений возможна автоматизация задач оп-
тимизации системы с помощью вычислительных кластеров или суперкомпьютеров. В этом 
случае задача оптимизации перекладывается на программное обеспечение, которое переби-
рает варианты параметров системы методом полного перебора. Последовательность взаи-
модействия с такой системой представляет собой задание диапазонов значений для каждо-
го параметра, формирование множества наборов значений параметров, отправку наборов на 
вычислительные кластеры для определения значений критериев и выдачу результатов раз-
работчику. Оптимизация может проводиться с применением методов многокритериального 
анализа и систем поддержки принятия решений.

Оптимизация системы с использованием параллельных вычислений может быть автома-
тизирована при помощи вычислительных кластеров и суперкомпьютеров. Для этого задача 
оптимизации перекладывается на программное обеспечение, которое перебирает варианты 
параметров системы методом грубой силы. При этом порядок наборов значений парамет-
ров неважен, а оптимизация проводится после рассмотрения всех наборов. Подобные задачи 
нахождения рациональных значений параметров для решения расчетной задачи называются 
оптимизацией гиперпараметров [1, 2]. Одним из алгоритмов оптимизации гиперпараметров 
является Байесовский оптимизатор, который позволяет находить закономерности влияния 
значений отдельных параметров на критерии эффективности. IBM (international business 
machines) разработала систему BOA (bayesian optimization accelerator), использующую искус-
ственный интеллект на базе Байесовской оптимизации для быстрого нахождения рациональ-
ных решений [3–5]. BOA работает как прослойка между вычислительной программой и хра-
нилищем входных параметров. В случае неверной работы BOA результат будет таким же, как 
и при применении метода грубой силы. Для решения задачи переупорядочивания наборов 
гиперпараметров перед отправкой на вычислительную систему может быть использован метод 
муравьиных колоний.

В работе приводятся модификации метаэвристического метода оптимизации – метода му-
равьиных колоний, позволяющие решать задачу поиска рациональных значений параметров, 
т.е. осуществлять поиск решений, приемлемых для лица, принимающего решения (ЛПР). Ал-
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горитмы оптимизации дают возможность рассмотреть не все наборы значений параметров, 
а путем небольших вычислений найти близкие к оптимальным значения параметров (если 
говорить про метаэвристические алгоритмы, например метод муравьиных колоний, то рацио
нальных значений параметров). При наличии нескольких значений критериев многоэкстре-
мальных и сложных овражных функций методы оптимизации могут находить не глобальное 
оптимальное решение, а локальный экстремум. Для решения данной проблемы применяют 
мультистарт – многократный повторный запуск алгоритма из различных начальных состоя-
ний [6].

Недостатком полного перебора является необходимость проанализировать все решения, 
в том числе дающие наихудшее значение целевой функции, физически не реализуемые, не-
логичные. Модификации алгоритмов полного перебора стараются выделить точки, которые 
надо рассмотреть раньше других. Например, атака по словарю (метод подбора пароля с по-
мощью часто используемых слов) проводит полный перебор всех паролей, но сначала изучает 
все комбинации паролей из словаря. Предлагается применить динамическое переупорядочи-
вание приведенных решений в процессе их перебора.

Данный алгоритм требует взаимодействия с пользователем, инженером, решающим вы-
числительную задачу, который фактически выступает ЛПР. Если пользователь задаст область 
допустимых значений критерия (область решений, которая устраивает ЛПР), то возможна 
остановка алгоритма полного перебора в случае, если найдено решение, попадающее в дан-
ную область. Переупорядочивание решений предлагается осуществлять с помощью метода 
муравьиных колоний.

Метод муравьиных колоний ACO (ant colony optimization), предложенный M. Dorigo, ре-
шал задачу коммивояжера и позже был расширен на большой класс оптимизационных за-
дач [7, 8]. Элитный, ранжированный и Min-Max алгоритмы описаны давно и применяются 
во множестве задач [8]. В работе описывается задача параметрической оптимизации: поиск 
оптимальных значений параметров с последующим продолжением поиска рациональных 
решений. Задача поиска оптимальных значений параметров методом муравьиных колоний 
рассматривалась в публикациях многих авторов: комбинаторная оптимизация [9, 10], реше-
ния задачи составления расписаний [11], составления заявки на поставки [12], задачи о на-
значении [13], классификации [14] и других параметрических задач [15, 16]. Отдельно следует 
отметить оптимизацию гиперпараметров для нейронных сетей [17], управления дискретны-
ми детерминированными системами [18, 19], непрерывную [6, 19–23] и многоэкстремальную 
модификации метода муравьиных колоний [24, 25]. Также широко применяются различные 
гибридные методы, в составе которых имеется метод муравьиных колоний или роевой веро-
ятностный выбор решения [26].

В статье представлена задача, когда метод муравьиных колоний осуществляет поиск рацио-
нальных решений параметрической задачи, но не сходится к ним, а продолжает поиск новых 
решений. Данный подход основан на работе метода муравьиных колоний совместно с вычис-
лительно сложными аналитическими и имитационными моделями, в которых вычисляются 
значения функций. Важно, чтобы каждое решение рассматривалось один раз. В результате 
требуется хранение уже вычисленных решений. Необходима модификация метода муравьи-
ных колоний, позволяющая не сходиться к одному решению, как в оригинальном алгоритме, 
а продолжить поиск новых решений [15]. Для выборки решений с помощью метода муравьи-
ных колоний пользователь (инженер) задает границы изменения значений и шаг изменения 
значения параметров системы. Возможно и непосредственное задание качественных значе-
ний параметров. На основе информации от пользователя создается структура данных, в кото-
рой содержатся параметры и их дискретные значения для каждого параметра системы [15, 16]. 
Метод муравьиных колоний определяет конкретные значения для каждого параметра (реше-
ние), которое отправляется на вычислительный кластер для определения значения критерия. 
Полученные значения используются методом муравьиных колоний для решения задачи опти-
мизации. Вычислительный кластер и его целевая функция для исследуемой системы являются 
черным ящиком (black box). Вычисление может быть ресурсоемко, требовать существенного 
времени. Поэтому для повышения производительности требуется хранить значения критерия, 
которые уже были вычислены для заданных значений параметров, в хэш-таблице для мини-
мизации запросов к вычислительному кластеру. Перед отправкой на кластер решение ищется 
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в хэш-таблице, из-за этого не требуется сходимость всех муравьев к одному решению, так 
как возможен поиск оптимума (путем сравнения значений критерия) в конечном множестве 
рассмотренных методом муравьиных колоний решений [15]. В статье описывается подход, 
позволяющий для каждого агента-муравья находить новое, еще не рассмотренное на кластере 
решение [27].

1. Постановка задачи. Пусть имеется дискретное множество параметров = … …1 2{ , , }.i nP p p p p  
У каждого i-го параметра существует множество допустимых значений Vi = {v1,i, v2,i, ... vj,i, ... 
vmi,i,}, i = 1, n. Количество допустимых значений определяется величиной |Vi| = mi > 0, завися-
щей от номера параметра. Так для различных параметров может быть найдено различное 
количество возможных значений. В результате работы алгоритма оптимизации определя-
ется вектор значений параметров, называемый далее решением:     = … …1, 2, , ,( , , ),k k k i k n kX x x x x  
  = ,kX n    ∀ ∃ = ∧ ∈, , ,где : ( ) ( )i k j i j i ii j x v v V . Здесь k – номер агента (муравья), который получает 
решение независимо от других агентов. Всего на итерации метода муравьиных колоний ре-
шение задают одновременно K агентов. Таким образом возможно параллельное получение 
каждого решения Xk. Найденный вектор значений параметров отправляется на вычислитель, 
который возвращает значение критерия, целевой функции f(Xk). Решения рассматриваются в 
дискретном пространстве значений параметров, и требований непрерывности и дифференци-
руемости на f(Xk) не накладывается.

Требуется найти множество решений = …* * *
1 2{ , , },zY X X X  таких, что *( ) , ,∈ y ∀if X i  где y – 

область удовлетворительных значений целевой функции. Число решений z не задается ЛПР, 
достаточно одного решения (z ≥ 1). Их может быть больше одного в случае, если решение ищут 
несколько агентов k > 1. Агент, нашедший удовлетворительное решение, останавливает поиск, 
т.е. 1 z K≤ ≤ . Действительно для задачи минимизации достаточно указать только правую гра-
ницу B для приемлемой области ≤*( ) ,if X B  а y = −∞( ; ].B  Таким образом определяется область 
приемлемых для ЛПР значений критериев. Данная задача формально относится к классу за-
дач удовлетворения ограничений (constraint satisfaction problems (CSP) [28].

2. Метод решения. В методе муравьиных колоний каждое значение параметра определяется 
множеством: P, V, t, h, где P – множество параметров; V – множество допустимых значений; 
t – вес (количество феромона) для значения параметра; h – количество решений, в которых 
было использовано данное значение параметра. В оригинальном методе муравьиных коло-
ний применялась формула вероятностного перехода (2.1) из вершины i в вершину j, в кото-
рой применялась информация о длине дуги m и феромоне t [7, 8]. В данной задаче вершина 
графа – это допустимое значение параметра vj,i, а дуги связывают все значения параметров с 
соседними номерами i и i + 1 для i = 1, n – 1. Параметры алгоритма a, b описывают соотноше-
ние длины дуги и количества феромона. Так как оригинальный алгоритм должен вычислять 
путь коммивояжера в графе, то посещенные вершины недоступны для повторного посеще-
ния, множество Ji,k – множество доступных вершин для посещения из вершины i для агента 
k. Ниже Pi, j, k(t) определяет вероятность перехода из вершины i в вершину j для агента k на 
итерации t:

	 ( )
( ) ( )

( ) ( )
,

, ,
, , ,

, ,

,

i k

i j i j
i j k i k

i l i l
j J

t t
P t j J

t t

ba

ba

∈

t m
= ∈

t m∑
  ( )  , , ,0, .i j k i kP t j J= ∉  	 (2.1)

Для решения параметрических или других задач, в которых в графе отсутствует априорная 
информация о эффективности перемещения агента в вершину, формула (2.1) изменяется и 
в ней остается только один нормализованный сомножитель:
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В таком случае, если в формуле остаются только веса вершин, алгоритм начинает стагни-
ровать, сходиться к первому хорошему решению [6, 29]. Это происходит из-за того, что на 
начальных итерациях нет никакой информации о графе и все вершины имеют одинаковую 
вероятность выбора. После нескольких первых итераций вершины рассмотренных решений 
будут иметь большую вероятность выбора, чем другие вершины.

Предложим новую формулу для расчета вероятности выбора значения j для параметра i:

	

=

=

∑
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i j k m

i l
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    1, ,ij m∉ 	 (2.2)

	
b g

a h   
= l t + l + l    h h  

,
, 1 , , 2 3

, max,

( )1
( ) ,

( )
i j

i j norm i j
i j i

t
z t

t   ( )  , 0, 1, ,i j iP t j m= ∉

где i – номер параметра pi ∈ P; j – номер значения параметра vj, i ∈ Vi; t – номер итерации; 
  1 2 3, ,l l l ∈R  – коэффициенты аддитивной свертки,   l l l ∈ ∞1 2 3, , [0, ),    , ,a b g ∈R  – степени сла-

гаемых аддитивной свертки;  t =t t + t + … + t, , , ,1 ,2 ,( ) ( )/( ( ) ( ) ( ))
inorm i j i j i i i mt t t t t  – нормированный 

вес для значения с номером j параметра с номером i для итерации t; hi, j(t) – количество при-
менений в рассмотренных решениях для значения с номером j параметра с номером i для 
итерации t; hmax, i – максимально возможное количество применений значений для параметра 
с номером i.

Недостатки линейной свертки, взаимокомпенсация слагаемых, для вероятностной фор-
мулы являются достоинством [29]. По результатам взаимокомпенсации на разных итераци-
ях алгоритма разные слагаемые в большей степени влияют на вероятность выбора значения 
параметра, что позволяет оставаться алгоритму эффективным на любых итерациях. Первое 
слагаемое at , , ( )norm i j t  зависит только от нормированного количества весов у параметра с но-
мером i, его значения с номером j. Второе слагаемое bh ,(1/ ( ))i j t  зависит от количества посе-
щений значения параметра агентом, т.е. сколько раз значение параметра рассматривалось в 
решениях. Данное слагаемое позволяет увеличить вероятность выбора значений параметра с 
наименьшим количество раз посещения. Добавление данного параметра дает возможность 
избежать стагнации алгоритма. После нескольких итераций алгоритма влияние данного па-
раметра уменьшается из-за возросшего значения hi,  j(t). Третье слагаемое, наоборот, увеличи-
вается, когда количество решений с определенным значением параметра hi,  j(t) приближается 
к максимальному количеству hmax, i. Значение hmax, i для дискретной задачи можно точно вы-
числить по формуле:

	  max,
1

/ .
n

i s i
s

m m
=

h = ∏

Данное слагаемое помогает найти последние решения и практически не влияет на работу 
алгоритма на ранних итерациях.

На каждой итерации метода муравьиных колоний поколение агентов размерностью K на-
ходит решения Xk, k ∈ K, которые отправляются на вычислитель для получения значения кри-
терия f (Xk). После получения решений для всех агентов (Xk) из одного поколения определя-
ется новое состояние:

1. Увеличивается номер итерации:  1t t′ = + .
2. Определяются добавочные веса Dti, j, k(t), добавляемые для каждого значения с номером 

j параметра с номером i агентом k для итерации t (2.3); Q ∈ R – параметр метода муравьиных 
колоний, определяющий количество весов, добавляемых на единицу значения целевой функ-
ции:
	    Dt = = →, , , ,( ) / ( ) для , если mi( n) ,i j k k i k j i kt Q f X x v f X 	 (2.3)
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	 ( ) ( ) ( )     , , , ,для ,если max.i j k k i k j i kt Qf X x v f XDt = = →  

3. Задается количество весов для новой итерации:

	 ( ) ( ) ( ) ( ) , , , ,
1

1 ,
K

i j i j i j k
k

t t t
=

t = rt + − r Dt′ ∑ 	 (2.4)

где r ∈ [0, 1] – коэффициент испарения – параметр, определяющий скорость “устаревания” 
информации о предыдущем состоянии.

В (2.4) добавлен коэффициент (1 – r) для добавленного значения весов. Коэффициент 
добавлен для аналогичности формуле экспоненциального скользящего среднего. В формуле 
“прогнозным” значением является предыдущее значение, а “установившимся” – количество 
добавляемого феромона.

Последующие агенты будут определять решения для итерации t ′. Алгоритм продолжа-
ет итеративно находить решения, пока не будет остановлен. Критерием остановки работы 
алгоритма служит достижение заданного удовлетворительного значения целевой функции 
f (Xk) ∈ y.

В оригинальном методе муравьиных колоний в качестве целевой функции используется 
информация о длине пройденного пути агентом. Данная величина, как и количество феромо-
на, является положительной и в (2.1) вычисление вероятности не приводит к проблемам. Но 
в задачах с неизвестными значениями целевой функции f (Xk) возможно получение для опре-
деленных решений Xk отрицательных значений целевой функции, которая может привести к 
отрицательным значениям феромона. Для решения проблемы можно применить сдвиг зна-
чений целевой функции, но для данного подхода требуется заранее знать ( )min

k
k

X
f X . В работе 

[30] предложен подход, который позволяет осуществлять сдвиг целевой функции итерацион-
но при получении отрицательных значений. Можно пересчитать феромон во всех вершинах, 
что хоть и требует дополнительной памяти для хранения количества агентов, посетивших вер-
шину на каждой итерации, но позволяет не заботиться о значениях целевой функции:

	 ( ) ( ) ( ) ( )  , , , ,
1

1 ,
t

s s
i j i j i j t s

s

t t Q fv t k −
=

t = t + r − ′r′ ′ ∑ 	 (2.5)

где ′t , ( )i j t  – значение феромона в вершине для значения с номером j параметра с но-
мером i для итерации t по (2.4); fv′(t + 1) – сдвиг целевой функции на итерации t + 1, 

+ = +′ ′( 1) max ( ) ( ) ,k
k

fv t f X fv t  если  ′ ′+ < + = ′( ) ( ) 0; ( 1) ( ),kf X fv t fv t fv t  если  ′+ ≥( ) ( ) 0;kf X fv t  
fv′(t ) – величина сдвига целевой функции на предыдущих итерациях, начальное значение 
fv′(t ) = 0; ki,  j,t – s – количество муравьев-агентов в вершине для значения с номером j, парамет-
ра с номером i на итерации t – s.

Хранение вычисленных значений целевой функции f (Xk) для набора значений параметров 
Xk осуществляется в хэш-таблице. Хэш-таблица – это структура данных, которая применяет 
хэш-функцию для быстрого поиска, вставки и удаления элементов. Хэш-функция принимает 
значение параметров Xk и преобразует их в уникальное значение фиксированной длины – 
хэш, в работе используется алгоритм SHA-256. Если значение хэш отсутствует в таблице, то 
в нее заносятся значения Xk и значение целевой функции f (Xk), иначе возникает коллизия.

Хэш-таблица используется при вычислении значений целевой функции, для разгрузки 
вычислительного кластера. После нахождения решения Xk оно проверяется на присутствие 
в хэш-таблице. Если решение найдено, то назовем агента “нулевым” и для него возможно вы-
полнение различных действий: значение критерия f (Xk) определяется из хэш-таблицы (стан-
дартный алгоритм с промежуточным хранением решений); агент не будет добавлять веса для 
значений параметров Dti,  j, k(t) = 0; найти новое решение Xk. Среди алгоритмов поиска ново-
го решения рассматривался дальнейший циклический поиск решения, которого нет в хэш-
таблице, модифицированным методом муравьиных колоний. По результатам исследований 
наиболее эффективным является модификация метода муравьиных колоний с циклическим 
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поиском нового решения для нулевого агента (ACO cluster cycle infinity – ACOCCyI) [31]. 
Отличие такого подхода от обычной работы метода муравьиных колоний в том, что поиск 
нового решения происходит без изменения состояния. При условии, что все агенты найдут 
новое решение, можно вычислить необходимое количество итераций алгоритма и определить 
критерий остановки работы алгоритма – требуемое количество итераций. Если полный поиск 
всех решений не требуется, то можно остановиться после выполнения определенного про-
цента итераций, например 5–10%. Алгоритм работы модифицированного метода муравьиных 
колоний приведен на рис. 1.

Начало
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Да

Да

Да

Да

Да

Нет

Нет

Нет
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не определили уникальный

набор параметров
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агентом?

Вычисление хэш‒функции
полученного решения

Выполнить повторный
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Переход к следующему агенту

Переход к следующему агенту
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1) колечество весов
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Вычисление значений критериев

Определить, насколько агент
увеличит веса (2.3)
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вычесленного из вероятностях

распределения (2.2)

Задание параметров метода
муравьиных колоний

Рис 1. Алгоритм модифицированного метода муравьиных колоний (ACOCCyI).
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При решении поставленной задачи критерием остановки алгоритма является нахождение 
решения, удовлетворяющего условию  f (Xi

*) ∈ y. Дополнительным техническим критерием 
остановки алгоритма выcтупает превышение допустимого времени работы алгоритма. В этом 
случае нельзя говорить о том, что задача строго решена в поставленной постановке, но тем 
не  менее найденное алгоритмом лучшее решение может быть полезно для ЛПР, если оно 
близко к области удовлетворительных значений целевой функции.

3. Исследование эффективности метода. Исходными задачами исследования являлись раз-
личные параметрические задачи и тесты. Рассматривались функция Розенброка, синусои-
дальная функция Швефеля, функции Шаффера, Растригина и др. [32–34]. Результаты тести-
рования будут показаны на функции “Carrom table function”:

	 [ ]  
+

−
π

 
  = − ∈ − 

2 2
1 2

2

1

1 2 1 2( ) cos cos 30; , 10,10 .

x x

f x x x e x x 	 (3.1)

В данном случае рассматривается задача минимизации. Так как представленные тесты – 
непрерывные функции, то для решения дискретной параметрической задачи необходимо 
дискретизировать параметры x1 и x2. Значения x1 и x2 определялись на интервалах [–10,10] 
с точностью 10–3. Таким образом, для каждого параметра было определено 20 001 значение от 
10 до –10 с шагом 0.001. При решении задачи минимизации целевой функции “Carrom table 
function” (3.1) имеет четыре оптимальные точки ((x1; x2): (9.646; 9.646), (9.646; –9.646), (–9.646; 
9.646), (–9.646; –9.646)) с равными значениями целевой функции f (x) = –24.15681551650653 
(рис. 2). Рассматривались также аналогичные многоэкстремальные функции с большим ко-
личеством оптимальных решений.

В данном примере область удовлетворительных значений целевой функции 
y = (–∞; –24.15681]. Другими словами, правая граница интервала – это значение целевой 
функции, которое немного больше, чем оптимальное значение целевой функции. Таким об-
разом, считается, что мы допускаем нахождение не строгого оптимального решения, а реше-
ния, которое может быть немного хуже оптимального. Для работы с отрицательными зна-
чениями целевой функции использовался метод динамического сдвига (2.5) [30]. Тестовый 
пример с заведомо известным оптимумом позволил лучше оценить эффективность предло-
женного метода.

Для изучения эффективности работы метода создано программное обеспечение на языке 
программирования Python [35]. Так как метод муравьиных колоний осуществляет вероятност-
ный выбор значения параметра, то необходимо оценить статистические результаты: оценки 
вероятности и математического ожидания с вычислением доверительных интервалов. В рам-
ках исследования вычисляются следующие оценки и их доверительные интервалы:

•	 оценка вероятности найти все попадающее в область y значение целевой функции за 
ограниченное число итераций;атематическое ожидание порядкового номера решения, на ко-
тором было определено попадающее в область y значение целевой функции;

•	 математическое ожидание количества дополнительных итераций метода муравьиных 
колоний;

•	 математическое ожидание времени поиска агентом одного нового решения.
Результаты исследования модификаций метода муравьиных колоний и оценки других ха-

рактеристик работы алгоритма имеются в репозитории [35]. https://github.com/kalengul/ACO_
Cluster

На рис. 2 приведены графики функций “Carrom table function” (сверху), “Мульти-функ-
ции” (посередине) и функции “Шеффеля” (снизу) и оценка (по результатам проведения 
3000 прогонов) математического ожидания порядкового номера решения, на котором было 
рассмотрены данные значения параметров x1 и x2. По результатам можно сделать вывод, что 
предложенные модификации метода муравьиных колоний позволяют осуществить процедуру 
полного перебора всех комбинаций значений параметров за прогнозируемое число итераций, 
так как на правых графиках (рис. 2) представлены все точки без пропуска значений. Такой 
подход гарантирует нахождение оптимального значения даже сложной многоэкстремальной 
функции без применения процедуры мультистарта. При этом оценка математического ожи-
дания номера итерации повторяет очертания графика функции. В результате перебора зна-
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чений параметров статистически оптимальные наборы значений параметров определяются 
на ранних итерациях. После нахождения первого оптимального решения на ранних итераци-
ях алгоритм не прекращает свою работу и позволяет определить все оптимальные решения, 
например для “Carrom table function” алгоритм рассматривает все четыре решения, попадаю-
щие в область y, менее чем за 500 итераций.

Одной из проблем применения метода муравьиных колоний является большое количество 
и сложность определения параметров алгоритма [6, 8]. Предложенная вероятностная формула 
(2.2) добавляет к стандартной формуле еще четыре параметра. Поэтому исследуем поведение 
алгоритма при различных значениях параметров для выработки рекомендаций.

Изучим эффективность применения всех слагаемых вероятностной формулы (рис. 3) на 
“Carrom table function” (3.1) (далее – задача малой размерности) с дискретизацией до 10–1 (201 

Рис 2. График функции “Carrom table function” (сверху), “Мультифункции” (посередине)  
и функции “Шеффеля” (снизу).
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значение каждого из параметров x1 и x2) с 25 агентами на итерации. Так как каждый агент в 
модификации ACOCCyI находит новое решение, то за 1936 итераций будут рассмотре-
ны все 40 401 решение [31]. Задача большой размерности представлена тестовой задачей, 
состоящей из 13 параметров и более 107 решений и некоторой авторской одноэкстремальной 
целевой функцией (подробнее см. [35]). При исследовании зависимости и варьировании па-
раметров метода муравьиных колоний большинство из них оставались неизменными и моди-
фицировался только один параметр метода. Поэтому определим “начальные, стандартные” 
значения параметров метода муравьиных колоний:
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для формулы вычисления вероятности выбора вершины (2.2):

	        1 2 31, 1, 1, 1, 1, 1l = l = l = a = b = g = ;

количество агентов на итерации N = 25;
коэффициент испарения r = 0.9;
коэффициент Q = 5.
Проведем исследование важности слагаемых в формуле вероятностного выбора значения 

параметра (2.2) на задаче малой размерности. Первое слагаемое обязательно присутствует в 
вероятностной формуле, так как это слагаемое является основным для работы метода му-
равьиных колоний: l3 = 1. Из графиков (рис. 3, светло-серые и темно-серые линии) видно, 
что без второго слагаемого в формуле (2.2) метод муравьиных колоний стагнирует и плохо 
находит решения (попадающие в область y значения целевой функции). Оценка вероятно-
сти определить решение равна 1 только после рассмотрения 72% решений (1400 итераций из 
1936). А третье слагаемое в формуле (2.2) позволяет на последних итерациях быстрее найти 
последние неэффективные решения, оценка математического ожидания количества дополни-
тельных итераций на одного агента составляет около 11 итераций при l3 = 1 и 13–15 итераций 
при l3 = 0. Также следует отметить, что резкое возрастание числа дополнительных итераций 
одного агента происходит только при поиске последней 1000 решений.

Из-за нормировки количества весов для значений параметра tnorm,i,  j(t) (2.2) параметр мето-
да муравьиных колоний – Q (2.3) не влияет на эффективность работы алгоритма. Подставив 
в формулу tnorm,i,  j(t ′) значение ti,  j(t ′) из (2.4), получим:
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Выразив Dti,  j, k(t) из (2.3) и подставив в (3.2), найдем:
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Рис 3. Оценки статистических параметров при изменении параметров l1, l2, l3 и ограничения на максимальное 
количество итераций: а, б – оценка математического ожидания количества дополнительных итераций на 

одного агента, в – оценка математического ожидания номера решения, на которой были найдены оптимальные 
значения параметров, г – оценка вероятности найти оптимальное решение.



 ДАВЫДКИНА и др.

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 1 2025

84

	  →если ( ) min.kf X

Параметр Q является постоянным для метода муравьиных колоний, не зависит от номера 
агента и может быть вынесен из под знака суммы:

	 ( )
( ) ( ) ( )

( ) ( ) ( )

( )  =

==

rt + − r

t = →

rt + −

′

r

∑

∑ ∑

,
1

, ,

,
11

1
1

, если min.
1

1
i

K

i j
kk

norm i j km K

i l
kkl

t Q
f X

t f X

t Q
f X

	 (3.3)

Подставив в (3.3) вместо ti,  j(t) значение, полученное на предыдущей итерации t ′ из (2.4), 
получим:
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где f (Xk)′ определяет значение целевой функции для агентов на предыдущей итерации. 
Единственное значение ti,  j(t), которое не может быть так декомпозировано, – начальное ко-
личество весов, которое для всех значений параметров одинаковое. Поделив все значения 
в формуле (3.4) на Q, запишем:
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Формулу (3.5) можно сократить на значение Q (постоянен для любого l ∈ mi ), оставив толь-
ко постоянную величину r ti,  j(t ′)/Q, при условии, что ti,  j(t ′) – начальный вес у каждого зна-
чения каждого параметра.

На рис. 4 показаны результаты исследования влияния различных значений параметра Q 
в зависимости от ограничения на количество проведенных итераций. Следует отметить ста-
тистическую неразличимость оценок, так как все они находятся в пределах доверительного 
интервала.

Исследования коэффициента испарения r (2.4) показали, что для задачи малой размер-
ности только малое значение коэффициента r ≤ 0.01 существенно влияет на статистические 
характеристики. При изучении задачи большой размерности подтвердилось предположение, 
что большие значения параметра испарения улучшают работу алгоритма. Следует отметить, 
что при небольшом количестве итераций (первые столбцы нижнего графика рис. 5) значение 
r = 0.95 наиболее эффективно. Рекомендуется выбирать 0.9 ≤ r < 1.

При исследовании количества агентов K на итерации (рис. 6), в случае фиксированного ко-
личества итераций метода муравьиных колоний, можно сделать вывод, что чем больше агентов, 
тем лучше, так как агенты рассмотрят большее число решений, а следовательно, и с большей 
вероятностью обнаружат решение, попадающее в область y значения целевой функции. На 
рис. 6 показаны результаты исследований при ограничении на количество рассмотренных ре-
шений (количество итераций до остановки алгоритма зависит от числа агентов на итерации), 
что позволяет определить эффективное количество агентов на итерации.

По результатам исследований выявлено, что при достаточно большом значении количества 
агентов на итерации K > 35 дальнейшее увеличение статистически не влияет на эффектив-
ность работы алгоритма, оценку вероятности найти решение, попадающее в область y значе-
ния целевой функции (максимизируемый критерий эффективности, верхний график рис. 6) и 
количества дополнительных итераций (минимизируемый критерий эффективности, нижний 
график рис.6). При исследовании “Carrom table function” статистически различима эффектив-
ность работы алгоритма только при пяти агентах на итерации.
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Наиболее сложными для исследования являются коэффициенты и значения параметров 
степеней в вероятностной формуле (2.2). На рис. 7 приведены результаты исследования взаи-
мовлияния коэффициентов l1, l2, l3 и степеней a, b, g. Больше результатов исследований мож-
но найти в работе [35].

(б)

0

0,00002

0,00004

0,00006

0,00008

0,0001

0,00012

0,00014

0,00016

Ограничение на количество итераций

2500 5000 7500 10000 12500 15000 17500 20000

(в)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Ограничение на количество итераций

2500 5000 7500 10000 12500 15000 17500 20000

(а)

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

Ограничение на количество итераций

50 25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

10
50

10
50

11
50

12
50

13
50

14
50

15
50

16
50

17
50

18
50

19
50

Рис. 4. Оценки статистических критериев эффективности работы алгоритма при изменении значений параметра Q 
и ограничения на количества итераций: а – оценка математического ожидания номера решения, на которой были 
найдены оптимальные значения параметров для графа малой размерности (бенчмарк); б – оценка вероятности 
найти оптимальное решение для графа большой размерности; в – оценка математического ожидания номера 

решения, на которой были найдены оптимальные значения параметров для графа большой размерности.
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Так как все слагаемые в формуле (2.2) меньше 1, то увеличение степени приводит к умень-
шению значения слагаемого, а коэффициент увеличивает значение. Верхний график на рис. 7 
показывает влияние коэффициента на оценку вероятности найти решение, попадающее в об-
ласть y значения целевой функции, в задаче большой размерности, для удобства часть линий 
скрыта. Наиболее эффективными являются значения a = 1, b = 1 или b = 2, g = 0.5. Таким об-
разом, самый высокий вес будет у третьего слагаемого. Далее по эффективности идут группы, 
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Рис. 5. Оценки статистических критериев эффективности работы алгоритма при изменении значений параметра 
r и ограничения на количества итераций: а – оценка вероятности найти оптимальное решение для графа малой 
размерности (бенчмарк), б – оценка вероятности найти оптимальное решение для графа большой размерности.
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Рис. 6. Оценки статистических критериев эффективности работы алгоритма при изменении количества агентов 
на итерации K и ограничения на количества итераций: а – оценка вероятности найти оптимальное решение 

для графа большой размерности, б – оценка математического ожидания количества дополнительных итераций 
на одного агента для графа большой размерности.

Рис. 7. Оценки статистических критериев эффективности работы алгоритма при изменении степенней a, b, g 
и коэффициентов l1, l2, l3: а – влияние параметров степени a, b, g на оценку вероятности найти оптимальное 
решение для графа большой размерности, б – влияние коэффициентов l1, l2, l3 на оценку вероятности найти 

оптимальное решение для графа большой размерности.
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у которых a = 1, b = 0.5 и любое значение g, потом a = 1, b = 1 и другие значения g и a = 1, b = 2 
или b = 10 и g > 1. В случае, когда a ≠ 1 эффективность алгоритма снижается. Рекомендуется 
не использовать данный параметр, а значение степени принимать равным 1 для a, b, g. Такой 
выбор позволяет получить приемлемые характеристики эффективности работы алгоритма и 
при этом настройку алгоритма осуществлять с помощью коэффициентов l1, l2, l3.

Из рис. 7 (нижний график) видно, что влияние значений коэффициентов l1, l2, l3 разно-
образно и зависит от относительных значений. Наилучшие показатели эффективности (оцен-
ка вероятности нахождения оптимального решения) связаны с соотношениями l1 < l2 < l3, 
причем разница может отличаться на порядок. Такое соотношение позволяет рассмотреть 
больше различных решений за счет высоких значений у коэффициентов l2 и l3, а далее учи-
тывать распределение феромона.

Заключение. Предложена модификация метода муравьиных колоний для осуществления 
перебора значений параметров в задачах поиска решений приемлемых для ЛПР. Метод по-
казал свою эффективность на задачах большой и малой размерности. Исследованы зависи-
мости эффективности работы от заданных параметров метода. Созданные алгоритмы и про-
граммные модули позволяют находить приемлемые решения при анализе и проектировании 
сложных систем. Они могут быть полезны при решении задач мультидисциплинарной опти-
мизации в авиационной и ракетно-космической отраслях, когда для расчета значения целе-
вой функции требуется провести вычислительные эксперименты с целым рядом сложных, 
в том числе имитационных моделей, включающих механизмы автоматического управления. 
Метод не гарантирует нахождения строго оптимального решения, но он позволяет определить 
удовлетворительное значение целевой функции за приемлемое время.
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