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Рассматривается задача определения параметров вычислительной системы реального времени 
(производительности процессоров, объемы и эффективность использования ресурсов), позволяю-
щих выполнить заданный комплекс работ в заранее установленные сроки. В случае невозможности 
подбора таких параметров решается задача минимальной коррекции характеристик заданий (дирек-
тивные интервалы и объемы работ). Для решения указанных задач применяется сетевое моделирова-
ние и алгоритмы нахождения потоков с заданными свойствами в сетях с выигрышами.
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Введение. С конца 70-х гг. прошлого века вычислительные системы реального времени ста-
ли широко внедряться в различные области деятельности человека. Главным образом они ис-
пользуются там, где требуемые вычисления необходимо выполнить в заранее установленные 
временные интервалы. В системах жесткого реального времени такие интервалы могут состав-
лять доли секунды. Например, подобная ситуация имеет место при испытаниях и эксплуата-
ции летательных аппаратов, атомных реакторов, при наблюдении за космическими объекта-
ми, проведении военных операций. Менее жесткие временные ограничения возникают при 
обработке информации экономического и экологического характера.

Во всех указанных выше случаях требуется решение следующих задач. Во-первых, необхо-
димо построить расписание, согласно которому все вычисления будут проведены в заданном 
темпе. Во-вторых, надо определить производительность системы, позволяющую это сделать. 
И в-третьих, в случае необходимости, минимальным образом скорректировать параметры си-
стемы и характеристики заданий.

СИСТЕМНЫЙ АНАЛИЗ И ИССЛЕДОВАНИЕ ОПЕРАЦИЙ
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По вопросам построения расписаний имеется большое количество публикаций. Так, 
в работе [1] подробно исследуются задачи, связанные с разработкой алгоритмов построения 
расписаний для систем обслуживания с одним и несколькими приборами. Рассматриваются 
задачи как с независимыми заданиями, так и с работами, связанными отношениями пред-
шествования. Большое внимание уделяется вопросам вычислительной сложности задач и 
построенных алгоритмов. Исследован ряд полиномиально разрешимых и NP-трудных задач. 
В работе [2] приводится подробная классификация задач теории расписаний. Обсуждаются 
некоторые задачи комбинаторной оптимизации, задачи составления расписаний для систем 
с одной и несколькими параллельными машинами, задачи на минимизацию времени выпол-
нения заданий и соблюдения директивных сроков, метод ветвей и границ. Рассмотрены во-
просы вычислительной сложности алгоритмов. В отличие от [1, 2], в работе [3] изучаются 
задачи построения расписаний в многостадийных системах. Исследуются различные задачи 
с одинаковыми последовательностями прохождения приборов, а также различными и нефик-
сированными маршрутами. Развивается теоретико-игровой подход к анализу таких задач.

В работах [4, 5] развивается метод “ветвей и границ” для решения задач теории расписа-
ний. Предполагается, что некоторые параметры, такие как длительности выполнения заданий 
и объемы имеющихся ресурсов, не являются фиксированными. Рассмотрены случаи, когда 
эти параметры могут принимать значения из заданных интервалов либо являются случай-
ными величинами. При этом множества значений этих параметров разбиваются на области, 
внутри каждой из которых расписание имеет неизменную структуру. В работах [6, 7] исследо-
ван ряд NP-трудных задач составления однопроцессорных и многопроцессорных расписаний. 
Предложены алгоритмы для критериев минимизации времени выполнения всего комплек-
са работ, а также минимизации максимального запаздывания. Вводится понятие расстояния 
между заданиями, на основе которого предложена методика нахождения приближенных ре-
шений.

В работах [8–10] предложен метод решения задачи построения расписаний с директив-
ными интервалами для многоядерной вычислительной системы реального времени. Метод 
основан на построении временной диаграммы, описывающей работу системы. Это позволя-
ет выполнять непосредственную проверку ограничений реального времени, заключающихся 
в том, что каждая работа успевает завершиться в своем директивном интервале. Указанные 
исследования проведены с помощью имитационной модели, основанной на использовании 
обобщенных конечных автоматов.

Упомянутые выше работы посвящены задачам распределения нескладируемых ресурсов, 
т.е. таких ресурсов, которые могут применяться многократно (приборы, процессоры, маши-
ны, станки и т.д.). В отличие от них, складируемые ресурсы повторно использоваться не могут. 
Примерами являются финансы, горюче-смазочные материалы, электроэнергия, устройства 
вычислительной системы, предназначенные для конкретного программного модуля. В рабо-
тах [11, 12] рассмотрены задачи минимизации времени выполнения комплекса работ, по-
требляющих складируемые ресурсы. При этом предполагается, что длительности выполнения 
заданий линейно зависят от объема выделенных им ресурсов. В работе [11] также рассмотре-
на задача минимизации потребления ресурсов при заданном директивном сроке выполнения 
всех работ.

В работе [13] изучена задача составления допустимого расписания со смешанным набором 
ресурсов – складируемых и нескладируемых. Решение этой задачи сведено к поиску макси-
мального потока в сети специального вида. Задача нахождения производительностей процес-
соров, при которых существует допустимое расписание в системе с однородным набором ре-
сурсов, исследована в работе [14] и сведена к системе линейных ограничений.

В настоящей статье рассматривается задача планирования комплекса работ в вычислитель-
ной системе реального времени со смешанным набором ресурсов – складируемых и нескла-
дируемых. Исследуется вопрос о существовании и построении решения (допустимого распре-
деления ресурсов и допустимого расписания). В случае, если решения не существует, ставится 
вопрос о корректировке параметров системы (производительности процессоров, объемы и 
эффективности ресурсов) и характеристик работ (объемы и директивные интервалы). Предла-
гаемая методика основана на использовании потоковых сетей с выигрышами. Решение ука-
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занных задач имеет большое значение при проектировании и функционировании сложных 
технических объектов, в частности бортовых систем управления.

1. Обозначения и определения. Введем следующие обозначения: W = {w1, w2, ..., wn} – комплекс 
работ (заданий), которые должны быть выполнены с использованием вычислительной систе-
мы, состоящей из m процессоров (нескладируемые ресурсы) и набора складируемых ресурсов. 
Каждая работа wi имеет две характеристики – директивный интервал [bi; fi] (задание wi может 
выполняться только в этом временном интервале) и объем Vi . Далее P1, P2, ..., Pm – процес-
соры, производительности которых равны s1, s2, ..., sm соответственно. Каждая работа может 
выполняться на любом процессоре. Допускаются прерывания и переключения с одного про-
цессора на другой, которые, по предположению, не требуют временных затрат. Кроме того, 
возможно параллельное выполнение одной работы несколькими процессорами (в частности, 
всеми процессорами вместе). Не допускается одновременное выполнение нескольких работ 
одним процессором. Если процессор с производительностью s выполняет некоторое задание 
в течение интервала времени d, то объем сделанной им работы составляет sd.

Помимо процессоров для выполнения заданий могут использоваться L типов складируе-
мых ресурсов. Для краткости в дальнейшем будем называть их просто ресурсами. Их объемы 
составляют R1, R2, ..., RL соответственно. В отличие от процессоров, ресурсы повторно ис-
пользоваться не могут. Если для выполнения задания wi выделено rli единиц ресурса l-го типа, 
то это обеспечивает объем работы, равный rli zli , где zli – эффективность применения ресурса 
l-го типа для задания wi. В отличие от работы [13], эффективность зависит как от типа ресурса, 
так и от задания. Работе wi должно быть выделено не менее rli

0 и не более rli
1 единиц ресурса l-го 

типа, l = 1, L. Величина Vi – это суммарный объем работы, обеспечиваемый процессорами и 
ресурсами, необходимый для выполнения задания wi.

Допустимым распределением ресурсов будем называть распределение rli, которое удовле-
творяет ограничениям:

	     0 1, 1, , 1, ,li li lir r r l L i n≤ ≤ = = 	 (1.1)

	   
1

, 1, .
n

li l
i

r R l L
=

≤ =∑ 	 (1.2)

Расписание для комплекса W показывает для каждой работы wi ∈ W, в какие временные 
интервалы времени какими процессорами она выполняется. Допустимое расписание – это 
такое расписание для W, при котором каждое задание wi ∈ W полностью исполняется в своем 
директивном интервале [bi; fi]. Решением задачи будем называть пару “допустимое распреде-
ление ресурсов – допустимое расписание”.

2. Постановка задачи. Входными данными задачи обозначим совокупность характеристик 
заданий (директивные интервалы и объемы) и параметров системы (производительности про-
цессоров, объемы и эффективность использования ресурсов). Требуется решить следующие 
задачи.

З а д а ч а 1. При фиксированных входных данных определить, существует ли решение, и 
найти его при положительном ответе.

З а д а ч а 2. В случае отрицательного ответа в задаче 1 скорректировать параметры системы 
и характеристики заданий так, чтобы решение существовало.

Решение сформулированных задач основано на построении потоковой сети и нахождении 
в ней потоков с определенными свойствами. В отличие от [13], будем применять сети с вы-
игрышами [11].

3. Решение задачи 1. Используем аппарат потоковых сетей с выигрышами. Сеть с выигры-
шами отличается от обычной сети тем, что в некоторых узлах величина выходящего потока 
отличается от величины входящего потока некоторой мультипликативной константой [11]. 
А именно величина выходящего потока из узла a равна величине входящего потока в узел 
a, умноженной на постоянное для данного узла число c(a), называемое коэффициентом вы-
игрыша узла a.

Пусть y0 < y1 < ... < yp – все различные величины bi и fi, i  = 1, n. Построим потоковую ориен-
тированную сеть с выигрышами G = (N, A) (см. рисунок). Определим множество узлов:
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	 { }      , , , , , ,j l li kj iN u I E D P w v= , j  1, p= ,    1, , 1,l L k m= = ,  1,i n= .

Здесь u – источник, v – сток, Ij соответствует интервалу [yj–1; yj], El – ресурсу l-го типа, Dli – 
ресурсу l-го типа и заданию wi, Pkj – работе процессора Pk в интервале Ij, wi – заданию wi ∈ W. 
Определим множество дуг:
	 { }             = ( ) ( ) ( ) ( ) ( ) (( , ), , , , , , , , , , , , ,)j l l li j kj kj i li i iA u I u E E D I P P w D w w v

j = 1, p, l = 1, L, k = 1, m, i = 1, n. 
Дуга (Pkj, wi) вводится в сеть G в том случае, если Ij  ⊆ [bi; fi], т.е. если работа wi может выпол-

няться в интервале Ij. Сеть G содержит O(pm + Ln) узлов и O((pm + Ln)n) ориентированных дуг.
Узел Pkj имеет коэффициент выигрыша, равный sk. Это означает, что если в узел Pkj по 

дуге (Ij, Pkj) входит поток g, то величина суммарного потока, выходящего из узла Pkj по дугам 
(Pkj, wi), равна sk g, т.е.

	 ( ) ( )  
1

, , .
n

kj i k j kj
i

g P w s g I P
=

=∑ 	 (3.1)

Коэффициент выигрыша узла Dli равен zli. Это означает, что если в узел Dli по дуге (El, Dli) 
входит поток g, то величина потока, выходящего из узла Dli по дуге (Dli, wi), равна zli  g, т.е.

	 ( ) ( ), , .li i li l lig D w z g E D= 	 (3.2)

Коэффициенты выигрыша остальных узлов равны 1, т.е. для них выполняется условие 
сохранение потока. В узлах Pkj и Dli это условие трансформируется в равенства (3.1), (3.2) 
соответственно. Каждая дуга (x, y) ∈ A сети G имеет два параметра: L(x, y) – нижняя граница 
потока по дуге (x, y), U(x, y) – верхняя граница потока по дуге (x, y). Значения параметров L и 
U приведены в табл. 1.

В табл. 2 поясняется смысловое значение потока g по дугам сети G.
Предположим, что в сети G существует некоторый поток g. С помощью этого потока и 

пояснений, содержащихся в табл. 2, можно построить решение задачи 1. Используя дополни-
тельно соотношения (3.1), (3.2), сделаем следующие выводы.

I1

w1

vu

P1 j

Pk j

Pm j

E1
Dl 1

Dl i

Dl n

wn

wi

Ij

El

EL

Ip

Рисунок. Потоковая сеть G с выигрышами.
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1.	 Структура сети G такова, что каждая работа wi выполняется только в своем директивном 
интервале [bi;  fi].

2.	 Суммарное время работы процессора Pk в интервале Ij составляет

	 ( ) ( ), , .
1

n

kj i k j kj j
i

g P w s g I P
=

= ≤ d∑

Такое расписание выполнения работ W процессорами P1, P2, ..., Pm может быть реализо-
вано, поскольку по условию задачи допускается параллельное выполнение одного задания 
произвольным числом процессоров.

3.	 Суммарное время работы всех m процессоров в интервале Ij составляет

	 ( ) ( ) 
1

, , ,
m

j kj j j
k

g I P g u I m
=

= ≤ d∑
что допустимо.

4.	 Объем ресурса l-го типа, выделяемый работе wi, составляет g(El, Dli), что удовлетворяет 
условию задачи, поскольку ( )0 1,li l li li lir g E D r r≤ = ≤ .

5.	 Суммарный объем ресурса l-го типа, используемый для выполнения работ, составляет

	 ( ) ( ) 
1

, , ,
n

l li l l
i

g E D g u E R
=

= ≤∑

что удовлетворяет условию задачи.
6.	 Каждая работа выполнена полностью, поскольку g(wi, v) = Vi при всех i  = 1, n.
Таким образом, если в сети G существует поток, то в задаче 1 существует решение.
Покажем теперь, что из существования решения в задаче 1 следует существование потока 

g в сети G. Пусть работе wi выделено rli единиц ресурса l-го типа. Определим поток по дуге 
(El, Dli) равным этой величине, т.е. g(El, Dli) = rli. Пусть далее g(Dli, wi) = zli rli,

	 ( ) ( ) 
1 1

, , .
n n

l l li li
i i

g u E g E D r
= =

= =∑ ∑

Таблица 1. Значения параметров дуг сети G

Дуга L U
(u, Ij) 0 mdj

(u, El) 0 Rl

(El, Dli) rli
0 rli

1

(Ij, Pkj) 0 dj

(Pkj, wi) 0 skdj

(Dli, wi) zli rli
0 zli rli

1

(wi, v) Vi Vi

Таблица 2. Физическая интерпретация потока g по дугам сети G

Поток по дуге Физический смысл потока по дуге
g(u, Ij) Суммарное распределяемое процессорное время в интервале Ij

g(u, El) Суммарное распределяемое количество ресурса l-го типа
g(El, Dli) Объем ресурса l-го типа, выделяемый заданию wi

g(Ij, Pkj) Суммарное время работы процессора Pk в интервале Ij

g(Pkj, wi) Объем работы процессора Pk по выполнению задания wi в интервале Ij

g(Dli, wi) Объем работы по выполнению задания wi с помощью ресурса l-го типа
g(wi, v) Суммарный объем работы по выполнению задания wi с помощью процессоров и ресурсов
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Тогда из (1.1), (1.2) следует, что

	 ( ) ( ) 0 1, ,li li li i l li li li liz r g D w g E D z z r≤ = ≤ , ( ) 0 , l lg u E R≤ ≤ .

Допустим, что tkji – продолжительность выполнения работы wi процессором Pk в интервале 
Ij (tkji ≤  dj). Определим  =( ),kj i k kjig P w s t ,

	 ( )
1

, .
n

j kj kji
i

g I P t
=

= ∑
Тогда

	 ( ) 0 , ,kj i k jg P w s≤ ≤ d  ( ),0 j kj jg I P≤ ≤ d .

Положим, что

	 ( ) ( ) 
1

, , .
m

j j kj
k

g u I g I P
=

= ∑

Тогда ( ) 0 , j jg u I m≤ ≤ d . Наконец, определим

	 ( ) ( ) ( )  
= = =

= +∑ ∑∑
1 1 1

, , , ,
pL m

i l i kj i
l j k

g w v g E w g P w

т.е. g(wi, v) – это суммарный объем работы по выполнению задания wi, предоставляемый про-
цессорами и ресурсами. Поскольку работа wi сделана полностью, то g(wi, v) = Vi. Следователь-
но, не нарушены ограничения на поток по всем дугам сети G, заданные в табл. 1. Кроме того, 
верны условия сохранения потока в узлах Ij, j = 1, p, El, l = 1, L, и wi, i = 1, n, а также условия 
(3.1), (3.2) для узлов Dli, l = 1, L, i = 1, n и Pkj, k = 1, m, j = 1, p. Тогда g является потоком в сети G.

Таким образом, доказано, следующее утверждение.
Л е м м а. В задаче 1 решение существует в том и только том случае, когда в сети G суще-

ствует поток.
Из леммы 1 и проведенных выше рассуждений вытекает следующий алгоритм решения 

задачи 1.
Ш а г 1. Построить сеть G.
Ш а г 2. Найти в сети G поток g. (Для этого может быть использован, например, алгоритм 

дефекта [15]. При этом стоимость единицы потока по каждой дуге полагается равной нулю.) 
Если поток существует, то перейти на шаг 3. В противном случае – на шаг 4.

Ш а г 3. Работе wi следует выделить ресурс l-го типа в количестве g(Dli, wi)/zli, l = 1, L, и вы-
полнять ее процессором Pk в интервале Ij в течение времени

	 ( )  ,kj i kg P w s ,  1,k m= , j  1, p= ,  1,i n= .

Завершение алгоритма.
Ш а г 4. Решения не существует.
Оценим вычислительную сложность предложенного алгоритма. Учитывая неравенство 

p ≤ 2n – 1, получаем, что число узлов и число дуг в сети G составляет соответственно O(mn + Ln) 
и O(mn2 + Ln). Тогда сложность отдельных этапов алгоритма следующая: шаг 1 – O(mn2 + Ln), 
шаг 2 –
	 ( ) 

∈
+2 2

( , )
( ) max ( , ) ,

x y A
O mn Ln U x y

шаг 3 – O(mn + Ln). Таким образом, вычислительная сложность алгоритма составляет 
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	 ( ) ( )
( ) 

∈

 
+  

22

,
max ,
x y A

O mn Ln U x y .

З а м е ч а н и е. Одним из действий алгоритма дефекта [15], применяемого на шаге 2, 
является поиск увеличивающего пути. Следует учесть, что при прохождении через узелDli по 
дугам (El, Dli) и (Dli, wi) поток по дуге (Dli, wi) необходимо умножить на zli. Аналогично при 
прохождении через узел Pkj по дугам (Ij, Pkj) и (Pkj, wi) поток по дуге (Pkj, wi) нужно умножить 
на sk. При прохождении через узлы Dli и Pkj по дугам (wi, Dli), (Dli, Ei) и (wi, Pkj), (Pkj, Ij) соответ-
ственно (т.е. в случае, когда эти дуги используются как обратные) потоки по дугам (Dli, El) и 
(Pkj, Ij) следует разделить на zli и sk.

4. Решение задачи 2. Используя поток g в сети G и данные из табл. 1 и 2, опишем задачу 1 
в виде следующей системы линейных ограничений, в которой требуется найти значения пере-
менных g(u, Ij), g(u, El), g(El, Dli), (Pkj, wi), (Dli, wi), (wi, v),  j = 1, p, l  = 1, L, k = 1, m, i = 1, n: 

	 ( ) ( )    
=

= =∑
1

, , , 1, ,
m

j j kj
k

g u I g I P j p 	 (4.1)

	 ( ) ( )    
1

, , , 1, ,
n

l l li
i

g u E g E D l L
=

= =∑ 	 (4.2)

	 ( ) ( )      , , , 1, , 1, ,li l li li iz g E D g D w l L i n= = = 	 (4.3)

	 ( ) ( )       
1

, , , 1, , 1, ,
n

k j kj kj i
i

s g I P g P w j p k m
=

= = =∑ 	 (4.4)

	 ( ) ( ) ( )     
= = =

+ = =∑∑ ∑
1 1 1

, , , , 1, ,
p m L

kj i l i i
j k l

g P w g E w g w v i n 	 (4.5)

	 ( )    0 , , 1, ,j jg u I m j p≤ ≤ d = 	 (4.6)

	 ( )    0 , , 1, ,l lg u E R l L≤ ≤ = 	 (4.7)

	 ( )     0 , , 1, , 1, ,j kj jg I P j p k m≤ ≤ d = = 	 (4.8)

	 ( )      0 , , 1, , 1, ,kj i k jg P w s j p k m≤ ≤ d = = 	 (4.9)

	 ( )     0 1, , 1, , 1, ,li l li lir g E D r i n l L≤ ≤ = = 	 (4.10)

	 ( )      0 1, , 1, , 1, ,li li li i li liz r g D w z r i n l L≤ ≤ = = 	 (4.11)

	 ( )    , , 1, .i ig w v V i n= = 	 (4.12)

Данная система содержит O(pmn + Ln) переменных и O(pm + Ln) линейных ограничений.
Перейдем к решению задачи 2. Предположим, что при исходных данных решения в зада-

че 1 не существует. Определим, каким образом следует изменить параметры системы и ха-
рактеристики заданий, чтобы решение существовало. Сначала исследуем, как надо увеличить 
производительности процессоров, чтобы решение в задаче 1 существовало. При этом будем 
минимизировать максимальное приращение производительностей. Пусть производитель-
ность sk процессора Pk увеличена на sk

0. Найдем такие величины sk
0, при которых
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0

1,
max k
k m

s
=

принимает минимальное значение. Это означает, что производительности всех процессоров 
следует увеличить на одну и ту же величину. Иными словами, надо минимизировать величи-
ну s0 при условии, что с производительностями процессоров sk + s0, k = 1, m, решение в зада-
че 1 существует. Таким образом, получаем следующую задачу линейного программирования: 
найти min s0 при условиях (4.1)–(4.3), (4.5)–(4.8), (4.10)–(4.12) и ограничениях

	 ( ) ( )      0

1

( ) , , , 1, , 1, ,
n

k j kj kj i
i

s s g I P g P w j p k m
=

+ = = =∑

	 ( )     00 , ( ) , 1, , 1, .kj i k jg P w s s j p k m≤ ≤ + d = =

Аналогично для определения минимального увеличения объема R 0 ресурсов каждого типа 
получаем задачу линейного программирования: найти min R 0 при условиях (4.1)–(4.6), (4.8)–
(4.12) и ограничениях
	 ( )   00 , , 1, .l lg u E R R l L≤ ≤ + =

Для определения минимального увеличения эффективности z0 ресурсов каждого типа по-
лучаем задачу линейного программирования: найти min z0 при условиях (4.1), (4.2), (4.4)–
(4.10), (4.12) и ограничениях
	 ( ) ( )      0( ) , , , 1, , 1, ,li l li li iz z g E D g D w i n l L+ = = =

	 ( )     0 0 0 1( ) , ( ) , 1, , 1, .li li li i li liz z r g D w z z r i n l L+ ≤ ≤ + = =

Для определения минимального уменьшения объема работ V 0 получаем задачу линейного 
программирования: найти min V 0 при условиях (4.1)–(4.11) и ограничениях

	 ( )   0, , 1, .i ig w v V V i n= − =

Задача минимизации суммарной стоимости процессоров при условии существования ре-
шения в задаче 1 выглядит следующим образом: найти

	
1

1

, ,
1

min
m

m

k k
s s

k

s c
…

=
∑

при условиях (4.1)–(4.12) и ограничениях sk ≤ sk
1, k = 1, m, где ck

1 – стоимость одной единицы 
производительности процессора Pk, sk

1 – верхняя допустимая граница производительности 
процессора Pk.

Задача минимизации суммарной стоимости используемых ресурсов при условии существо-
вания решения в задаче 1 выглядит следующим образом: найти

	
, ,

min
1

2

1l

L

l l
R R

l

R c
… =
∑

при условиях (4.1)–(4.12) и ограничениях Rl ≤ Rl
1, l = 1, L, где cl

2 – стоимость одной единицы 
ресурса l-го типа, Rl

1 – верхняя допустимая граница объема ресурса l-го типа.
Эту задачу можно также решить и путем поиска потока минимальной стоимости в сети 

G. Для этого надо определить стоимость единицы потока по дуге (u, El), равной cl
2, l  = 1, L, а 

в качестве верхней границы объема ресурса l-го типа взять Rl
1, l  = 1, L. Далее, используя алго-

ритм дефекта, найдем искомые величины Rl, l  = 1, L, если поток в сети G существует. Если же 
потока не существует, то и решения в этой задаче нет.
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Задачу минимизации увеличения директивных сроков заданий, при котором имеется ре-
шение задачи 1, будем решать в предположении, что все начальные директивные сроки bi 
совпадают, т.е. bi = b0, i  = 1, n. Без ограничения общности можно считать, что f1 < f2 < ... < fn. По-
прежнему предполагаем, что требуется минимизировать максимальное увеличение директив-
ного срока. Поэтому можно считать, что все величины fi увеличиваются на одно и то же зна-
чение, например на e. В этом случае длина интервала I1 увеличится на e, а длины остальных 
интервалов Ij, j = 2, p, останутся без изменения. Таким образом, получаем следующую задачу 
линейного программирования: найти min e при условиях (4.1)–(4.5), (4.7), (4.10) (4.12), огра-
ничениях
	 ( ) 1 10 , ( ),g u I m≤ ≤ d + e

	 ( )1 1 10 , ,kg I P≤ ≤ d + e

	 ( ) ≤ ≤ d + e1 10 , ( )k i kg P w s

и при условиях (4.6), (4.8), (4.9) для j = 2, p.
Заключение. Исследована задача распределения ресурсов и построения допустимого рас-

писания для комплекса работ в многопроцессорной системе реального времени. Разработан 
алгоритм нахождения параметров системы (производительности процессоров, объемы и эф-
фективность использования ресурсов), при которых решение в поставленной задаче суще-
ствует. Решена задача оптимальной коррекции характеристик заданий (директивные интер-
валы и объемы работ). Для решения указанных задач применяется сетевое моделирование и 
алгоритмы нахождения потоков с заданными свойствами.
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