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Этап концептуального проектирования летательных аппаратов характеризуется высокой степенью 
неопределенности исходных данных. Это связано с тем, что при формировании исходных данных 
из-за наличия случайных процессов или недостатка знаний приходится использовать недетерми-
нированные параметры, которые не могут быть заданы точным числом. Недетерминированность 
параметров связанна с параметрической неопределенностью, которая является одним из основ-
ных факторов, повышающих риски ошибочных проектных решений. Для решения этой проблемы 
предложены оптимизационные модели, которые позволяют формализовать задачи параметрического 
синтеза при концептуальном проектировании летательных аппаратов с учетом надежности проект-
ных решений. Для представления недетерминированных параметров применяются теория вероят-
ности и теория неопределенности. Теория неопределенности позволяет предоставить лицу, прини-
мающему решения, удобный инструмент для построения оптимизационных моделей, отражающих 
формализованные требования к проектируемому объекту.
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The conceptual phase of aircraft design is characterized by a significant degree of uncertainty in the initial 
data. This is largely due to the presence of random processes and incomplete information, requiring the 
use of non-deterministic parameters that cannot be defined by a precise number. These non-deterministic 
parameters are linked to parametric uncertainty, which is a key factor contributing to the increased risk of 
design errors. To address this challenge, this paper presents optimization models that formalize the tasks of 
parametric synthesis in aircraft conceptual design, with a focus on ensuring the reliability of design decisions. 
Probability theory and uncertainty theory are employed to represent non-deterministic parameters. The 
theory of uncertainty provides decision-makers with a powerful tool for constructing optimization models 
that encapsulate the formalized requirements of the designed system.
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Введение. Разработка методов проектирования летательных аппаратов является важной 
научной задачей, для которой вопросы обеспечения надежности проектных решений особен-
но актуальны [1, 2]. При этом надежность неразрывно связана с понятием неопределенно-
сти. Высокая степень неопределенности при задании входных параметров, используемых в 
традиционных расчетных методиках, которые предназначены для определения технического 
облика летательных аппаратов, приводит к необходимости учитывать риски получения нера-
ботоспособных проектных решений.

В мировой научной литературе в рамках решения оптимизационных задач структурного и 
параметрического синтеза в условиях неопределенности широко известна проблема обеспе-
чения надежности, которая получила общепринятое название RBDO (reliability-based design 
optimization) [3, 4]. Эта проблема традиционно в инженерной практике решается с помощью 
статистических методов [5]. Разработано множество подходов к повышению вычислительной 
эффективности статистических расчетов, связанных с проверкой вероятностных ограниче-
ний, используемых в задачах RBDO. В частности, в рамках теории вероятности применяются 
выборка по значимости [6], моделирование подмножеств [7], методы надежности первого и 
второго порядков [8, 9], методология поверхности отклика [10] и т.д.

Высокая практическая значимость задач RBDO обусловлена необходимостью использо-
вания ограничений, включающих недетерминированные величины. Так как ограничения с 
недетерминированными параметрами не определяют точные границы областей допустимых 
проектных решений, применяются числовые характеристики, позволяющие свести оптимиза-
ционную задачу к детерминированной постановке. Математическое ожидание и дисперсия 
являются усредненными числовыми характеристиками и часто не подходят проектировщи-
ку. Разброс значений, которые могут принимать случайные величины, может значительно 
отличаться при одинаковых значениях математического ожидания. Также можно привести 
множество вариантов распределений с разным разбросом значений, но имеющих одинаковые 
дисперсионные показатели. Поэтому при формализации задач RBDO с использованием тео-
рии вероятности обычно используются уровни вероятности или соответствующие им значе-
ния функций, зависящих от случайных параметров.

В последнее время значительный интерес для решения инженерных задач RBDO представ-
ляет применение методов, предназначенных для обработки экспертных данных. Существует 
множество работ, в которых задачи RBDO при проектировании технических объектов форма-
лизуются с помощью теории нечетких множеств [11, 12], интервальных методов [13, 14], тео-
рии доказательств [15, 16], теории возможностей [17], теории неопределенности [18] и других 
теорий, рассматривающих моделирование неопределенности с использованием мер для рабо-
ты с субъективной информацией. Также актуальной является проблема решения задач RBDO 
в условиях смешанной неопределенности, возникающая когда часть недетерминированных 
параметров задается случайными величинами, а другая часть – экспертами [19, 20].

Следует отметить, что независимо от теории при решении задач RBDO перед лицом, при-
нимающем решения (ЛПР), стоит сложная задача выбора уровней вероятности или степе-
ни уверенности в проектном решении. Повышение требований к надежности соблюдения 
тактико-технических характеристик летательного аппарата неизбежно приводит к смещению 
проектных решений в область “худших” значений целевых функций.

В статье для решения задач синтеза надежных проектных решений с помощью статисти-
ческой и экспертной информации при концептуальном проектировании летательных аппа-
ратов предлагается применять теорию неопределенности [21], в которой вводится степень 
уверенности эксперта как мера неопределенности. Мера неопределенности по аналогии с 
вероятностной мерой может использоваться для формирования ограничений, которые могут 
применяться при решении оптимизационных задач. Неопределенные ограничения лежат в 
основе критических значений, отражающих значение, которое будет или не будет превышено 
с заданным уровнем меры неопределенности. Другими словами, с помощью теории неопре-
деленности в задачах параметрического синтеза надежность проектных решений определя-
ется уровнем степени уверенности. Мера неопределенности в сравнении с другими мерами, 
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предназначенными для описания экспертных данных, более интуитивно понятна ЛПР, поз-
воляет описывать сложные виды распределений, обеспечивает высокую производительность 
решения оптимизационных задач. При строгой монотонности целевых функций и функций 
ограничений по неопределенным параметрам в теории неопределенности выведены аналити-
ческие выражения, позволяющие значительно снизить вычислительные затраты при решении 
оптимизационных задач. 

Структурно статья включает два раздела. В разд. 1 приводятся оптимизационные модели 
с неопределенными параметрами, их вероятностные аналоги, оптимизационные модели с 
неопределенными и случайными параметрами для случая смешанной неопределенности. В 
разд. 2 рассматриваются примеры решения задач концептуального проектирования, в кото-
рых требуется синтез надежных проектных решений.

1. Оптимизационные модели для синтеза надежных проектных решений в условиях неопреде-
ленности. Пусть x – вектор свободных параметров, x – вектор неопределенных параметров, 
для которых экспертами задаются функции распределения неопределенности, w – вектор 
случайных параметров с  идентифицированными функциями распределения вероятности, 
f1, …, fm – целевые функции, которые могут зависеть как от случайных, так и неопределен-
ных параметров. Функция распределения неопределенности неопределенного параметра (●) 
принимает значения в интервале [0, 1] и определяется как Ф(●)(x) = M{(●) ≤  x}, где M – мера 
неопределенности, отражающая степень уверенности эксперта в выполнении события (●) ≤  x. 
В теории неопределенности по аналогии с вероятностной мерой с математической строго-
стью описывается аксиоматика, основанная на мере неопределенности. Основное отличие 
от вероятностной меры заключается в аксиоме произведения событий. Мера произведения 
событий есть минимум мер этих событий. Вследствие этого мера неопределенности в отличие 
от вероятностной меры не является аддитивной.

Так как в результате расчета целевых функций формируются недетерминированные ве-
личины, ЛПР может оперировать требованиями к интервалам изменения целевых функций 
или степеням уверенности/вероятности в соблюдении этих интервалов. Далее через a* и P* 
будут обозначаться уровни степени уверенности и вероятности для функции *. Рассмотрим 
ряд моделей, которые позволяют формализовать задачи синтеза проектных решений с учетом 
их надежности.

Если ЛПР предпочитает задать уровни степени уверенности af1, ..., afm и минимизировать 
соответствующие им верхние границы полубесконечных интервалов, в которых должны на-
ходиться значения целевых функций, то применяется следующая многокритериальная опти-
мизационная модель.

Модель 1:

	 ( ) ( ){ }min inf , , ,inf , .
1

1f fmx
mf fx xa ax x   …   

В этой модели используются критические значения целевых функций inf af1
, …, inf afm

, кото-
рые в теории неопределенности определяются следующим образом:

	 ( ) ( ){ }{ }inf , inf | , ,
1 1 11

1 1f f f ff r M f rx xa
  = ≤ ≥ a x  x

	 ...

	 ( ) ( ){ }{ }inf , inf | , ,
f m m mm

m f m f ff r M f rx xa
  = ≤ ≥ a x  x

где M – мера неопределенности.
При максимизации целевых функций применяются критические значения supaf1, …, supafm, 

которые задаются следующим образом:

	 ( ) ( ){ }{ }1 1 11
1 1sup , inf | , ,

f f f ff r M f rx xa
  = ≥ ≥ a x  x
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	 ...

	 ( ) ( ){ }{ }sup , inf | , .
f m m mm

m f m f ff r M f rx xa
  = ≥ ≥ a x  x

Далее для краткости случаи максимизации целевых функций не рассматриваются.
Вероятностным аналогом оптимизационной модели 1 является модель, в которой опреде-

ляются уровни вероятности Pf1, ..., Pfm.
Модель 2:

	
1

min , , ,
mfx

fr r … 

	 ( )( ) ( )( )1 11 , , , , ,
m mf f m f fP f x r P P f x r Pw ≤ ≥ … w ≤ ≥

где P – оператор вероятности.
Если ЛПР предпочитает задавать верхние границы полубесконечных интервалов rf1, ..., rfm 

для значений целевых функций и максимизировать соответствующие им степени уверенно-
сти, то применяется другая оптимизационная модель.

Модель 3:

	
{ }

( )( ) ( )( )
1

1 11

max , , ,

, , , , ,

m

m m

f f

f f m f f

x

M f r Mx xf r

a … a

≤ ≥ ≤xa … ≥ ax

т.е. в этой модели ЛПР задает требования к значениям целевых функций и ищет решения, 
обеспечивающие максимальную уверенность в выполнении этих требований.

Вероятностным аналогом оптимизационной модели 3 является модель, в которой также 
определяются значения rf1, ..., rfm .

Модель 4:

	 { }max , , ,
1 mf f

x
P P…

	 ( )( ) ( )( )1 11 , , , , .
m mf f m f fP f x r P P f x r Pw ≤ ≥ … w ≤ ≥

Если ЛПР интересует общее снижение разброса целевых функций, то используется модель, 
в которой минимизируется разница между критическими значениями (задаются уровни уве-
ренности af1, ..., afm.

Модель 5:

	

( ) ( ){ }
( ) ( ) ( )

( ) ( ) ( )

min , , , , ,

 , inf , – sup , ,

, ,

, inf , – sup , ,

. , , . .

1 1

1

1

1 1 1где

0 5 0 5

f f

f fm m

m

m

m m m

f f

x
D f D f

D f f f

D f f

x x

x x x

x x xf

a a

a a

   …   

     =     
…

   =   
a ≥ … a

x x

x x x

 x x x

≥
 

Эта оптимизационная модель может дополняться критериями, обеспечивающими смеще-
ние диапазонов изменения целевых функций, например ожидаемыми значениями целевых 
функций:

	 ( ) ( )1min E , , , E , ,m
x

x xf f  …  
  x  x

где E – ожидаемое значение (аналог математического ожидания).
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Вероятностным аналогом модели 5 является модель, в которой каждый критерий опти-
мизации представляет собой разность между значением, которое целевая функция не пре-
высит с заданной вероятностью, и значением, которого целевая функция не будет меньше с 
заданной вероятностью.

Модель 6:

	 { }sup supinf infmin ,– , – ,
1 1 m mf ffx fr r r r…

	 ( )( ) ( )( )1 1

inf inf
1 , , , , ,

m mf f m f fP f x r P P f x r Pm ≤ ≥ … m ≤ ≥

	 ( )( ) ( )( )11

sup sup
1 , , , , ,

mmf m ff fP f x r P P f x r Pm ≥ ≥ … m ≥ ≥

	
1

0.5, , 0.5.
mf fP P≥ … ≥

Возможен случай, когда ЛПР затрудняется с выбором способа формирования требований 
к проектируемому объекту. Тогда предлагается использовать оптимизационную модель, в ко-
торой в качестве критериев оптимизации одновременно применяются степени уверенности и 
верхние границы полубесконечных интервалов для целевых функций.

Модель 7:

	 ( ) ( ){ }1
1min inf , , , inf , ,

f fm
m

x
f fx xa a

   … x  x

	 { }max , , .
1 mf f

x
a … a

В результате формируется Парето-фронт, позволяющий ЛПР после выполнения оптимиза-
ционных расчетов выбрать необходимые уровни степеней уверенности/вероятности и грани-
цы для целевых функций.

Вероятностным аналогом модели 7 является следующая модель.
Модель 8:

	 { }1
min , , ,

mfx
fr r…

	 ( )( ) ( )( )1 11 , , , , ,
m mf f m f fP f x r P P f x r Pw ≤ ≥ … w ≤ ≥

	 max , , .
1 mf f

x
P P … 

Рассмотрим случай, когда целевые функции зависят как от неопределенных, так и случай-
ных параметров. Смешанная неопределенность часто встречается в инженерной практике. 
Для решения этой проблемы предлагаются оптимизационные модели, в которых неопреде-
ленная величина представляется зависимой от случайных параметров. Это позволяет строить 
многоуровневые оптимизационные модели. Для краткости приведем только некоторые из них. 
Например, в представленной ниже модели, предназначенной для поиска компромиссных по 
надежности проектных решений, используются одновременно критическое значение, кван-
тиль, уровни вероятности и степени уверенности.

Модель 9:

	 { }1, ,�
min , ,

mf f
x

r r
a β

… ,

	
1 1, ,�

max , , ,� , , ,
m mf

x
f f f

a β
 a … a β … β 

	 ( )( )inf , , ,
1 11

1f f fP f x ra
 x w ≤ ≥ β 
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	 ...

	 ( )( )inf ,� ,� .
f m mm

m f fP f x ra
 x w ≤ ≥ β 

В следующей модели применяется разница между критическими значениями и квантиль, 
уровни вероятности и степени уверенности.

Модель 10:

	 { }
, , 

min , , ,
1 mf f

x
r r

a β
…

	 { }1 1,� ,�
max , , ,� , , ,

m mf f f f
x a β

a … a β … β

	 ( )( )1 11 , ,� ,f fP D f x r 
 ≤ ≥ βx w

	 …

	 ( )( , , ) ,
1 11 f fP D f x r x w ≤ ≥ β 

	

( ) ( ) ( )

( ) ( ) ( )

1 1
1 1 1, ,� inf , ,� �–�sup , ,� ,

, ,� inf , ,� – sup , ,� ,

f f

f fm m
m m m

D f x f x f

D f x f x f x

xa a

a a

     x w = x w x w     

     x w = x w x w     



	
1

0.5,� ,� 0.5.
mf fa > … a >

Представленные оптимизационные модели могут комбинироваться между собой и допол-
няться критериями и ограничениями в зависимости от специфики проектируемого объекта и 
предпочтений ЛПР.

Описанные модели предполагают проверку ограничений, которые не определяют четких 
областей допустимых проектных решений:

	 ( ){ }, 0
jj ff xM ≤ ≥ ax

или

	 ( ){ }, ,� 0 ,
jj fM f x x w ≤ ≥ a

	   1, , ,j m= …

где М − мера неопределенности, afj – уровень меры неопределенности.
В общем случае для вычисления меры неопределенности и критических значений ис-

пользуются численные алгоритмы [22]. В случае строгой монотонности целевых функций по 
неопределенным параметрам в целях снижения вычислительных затрат при оптимизацион-
ных расчетах может применяться упрощенный способ проверки ограничений с помощью ана-
литических выражений из теории неопределенности.

Пусть x = (x1, x2, ..., xn) fj, – непрерывная функция, строго возрастающая по x1, x2, ..., xq и 
строго убывающая по xq +1, xq +2, ..., xn. Тогда, согласно теории неопределенности, ограничение  
M{fj(x, x) ≤ 0} ≥ afj эквивалентно

	 ( ) ( ) ( ) ( ) ( )( )1 2 1

1 1 1 1 1,� , ,..., , 1 ,..., 1 0
j j q j q j n jj f f f f ff x

+
− − − − −
x x x x xF a F a F a F − a F − a ≤ ,

где Ф(●)
–1 – обратная функция распределения для параметра (●).
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Ограничение ( ){ } , , 0
jj fM f x x w ≤ ≥ a  эквивалентно

	 ( ) ( ) ( ) ( ) ( )( ) , ,..., , ,...,  
1 2 1

1 1 1 1 1, 1 1 , 0
j j j j jq q nj f f f f ff x

+

− − − − −
x x x x xF a F a F a F − a F − a w ≤ .

Другими словами, при любом afj, определяющем “жесткость” требований к выполнению 
ограничений, в левой части неравенства находится аналитическое выражение, которое не тре-
бует множества вычислений целевой функции при разных значениях неопределенных пара-
метров. В последнем неравенстве аналитическое выражение зависит от случайных парамет-
ров, поэтому для проверки ограничения могут использоваться стандартные статистические 
методы.

При помощи оптимизационных моделей, обеспечивающих синтез надежных проектных 
решений, особое внимание следует уделять формированию функций распределения неопре-
деленности. Нередко эксперты предпочитают использовать нормальные распределения, ко-
торые для случайного параметра (●) имеют вид:

	 ( )
( )

•
•

•

 
2( )

( ) 2
0

1 2
( ) 1 erf , erf( ) ,

2 2

x
t

x
x x e dt−

m

  − m  y = + =   πs    
∫

где y(●) – функция распределения вероятностей, m(●) – математическое ожидание случайной 
величины, sm(●) – среднеквадратическое отклонение случайной величины.

В теории неопределенности [19] в качестве альтернативы предлагается нормальная функ-
ция распределения неопределенности для неопределенного параметра (●):

	 ( ) ( )•
•

•

1

( )
( )

( )

1 exp ,
3 e

e x
x

−
  π −
 F = +  

  s  

5
0

0.1

0.2

0.3

ψ
(·)

(х
)/

Φ
(·)

(х
)

0.5

0.4

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35
х

Рис. 1. Пример графиков функций ( ) ( )• xy  и ( ) ( )• xF .
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где e(●) – ожидаемое значение неопределенной величины, se(●) – среднеквадратическое откло-
нение неопределенной величины. Величина e(●) – аналог математического ожидания в теории 
неопределенности. Величина se(●) вычисляется как корень из дисперсии неопределенной ве-
личины. В теории неопределенности дисперсия неопределенной величины является аналогом 
дисперсии случайной величины.

Использование этой функции является предпочтительным, так как обратная функция рас-
пределения неопределенности, необходимая для расчетов, находится в аналитическом виде:

	 ( ) ( ) ( )
( )•

• •
1

3
ln .

1

e
e−

s a
F a = +

π − a

На рис. 1 приводится пример графиков функций y(●)(x) и F(●)(x) для случая, когда m(●) = e(●) 
и sm(●) = se(●).

Так как нормальная функция распределения неопределенности имеет область определения 
[–∞, +∞], использование уровней степени уверенности, близких к единице, может приводить 
к применению значений неопределенных параметров, выходящих за разумные ограничения. 
Для решения этой проблемы следует задавать кусочно-линейные функции на физически об-
основанной области определения неопределенного параметра:

	 ( ) ( ) ( )( )
•

1

1
1

1

0, если ,

, если ,1 ,

1, если .

i i i
i i i

i i

n

x x

x x
x x x x i n

x x

x x

+
+

+

<
 a − a −F = a + ≤ ≤ ≤ ≤ −
 >

Пример кусочно-линейной функции распределения неопределенности неопределенного 
параметра (●) представлен на рис. 2.

Обратная кусочно-линейная функция распределения неопределенности также находится 
в аналитическом виде, что позволяет без дополнительных аппроксимаций выполнять расчеты 
по предложенным оптимизационным моделям. 
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Рис. 2. Пример кусочно-линейной функции распределения неопределенности.
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2. Результаты расчетных исследований. В этом разделе приводятся примеры применения 
оптимизационных моделей, представленных в разд. 1, для параметрического синтеза проект-
ных решений в условиях неопределенности. 

Рассмотрим задачу синтеза параметров силовой установки летательного аппарата, в кото-
рой максимизируются критические значения для максимального аэродинамического качества 
(K/ce)max и уровня волнового сопротивления kw (модель, представленная ниже). Эти целевые 
функции связаны с увеличением дальности полета и снижением сложности выполнения до-
звуковых тактико-технических требований. Неопределенными параметрами являются коэф-
фициенты Освальда и эквивалентного трения. Для краткости полный состав параметров и 
выражений для расчета (K/ce)max и kw не приводятся. Для расчета параметров двигателя взяты 
характеристики маневренного летательного аппарата типа F/A22.

Модель 11:

	 ( ) ( )
/ max

max
max sup / ,sup

kK c we
e

x
wK c ka a

       
.

Степени уверенности a(K/ce) max и akw
 принимаются равными 0.7, что допустимо на ранних 

этапах проектирования. Результатом применения модели 11 является двухмерный Парето-
фронт (рис. 3). Для сравнения также приводится Парето-фронт, полученный при решении 
задачи синтеза параметров силовой установки летательного аппарата, когда все входные па-
раметры детерминированы.

Парето-фронты на рисунке значительно отличаются. При введении неопределенных па-
раметров в оптимизационную модель Парето-фронт смещается в область меньших значений 
целевых функций. Результаты расчета соответствуют практике проектирования современных 
маневренных аппаратов и показывают, что при недетерминированности параметров соблю-
дение точного решения не гарантируется. Для обеспечения надежности проектных решений 
проектировщику следует выбирать точку на нижнем Парето-фронте.

Если ЛПР решает задать требования к нижним границам интервалов для значений целевых 
функций (rkw = 2.3, r(K/ce) max = 2.55), то применяется следующая модель.
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Рис. 3. Результат расчета по модели 11.
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Модель 12:

	
{ }

( ) ( ){ } ( ) { }

 a a



≥ ≥ a ≥ ≥ a


max

max max

( / )

/ /max

max , ,

/ , .

e w

w we e

K c k
x

e w k kK c K cM K c r M k r

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

αkw

(K
/C

e)
m

ax

Рис. 4. Результат расчета по модели 12.

Рис. 5. Результат расчета по модели 13 со случайными и неопределенными параметрами.
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Результат расчета по модели 12 представлен на рис. 4.
Полученный Парето-фронт позволяет найти проектное решение, обеспечивающее ком-

промисс между уровнями уверенности в реализации необходимых ограничений на (K/ce)max 
и kw.

Рассмотрим оптимизационную модель для синтеза весовых параметров летательного аппа-
рата, когда одновременно присутствуют случайные и неопределенные входные параметры.

Модель 13:

	

[ ]
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где M0 – взлетная масса, Mfuel – масса топлива, Mland – свободный член ограничения на поса-
дочную массу. Функция M0 зависит только от неопределенных параметров, Mfuel – от неопре-
деленных и случайных параметров.

Для расчетов взяты исходные параметры, соответствующие легкому пассажирскому само-
лету. Результаты расчета по модели 13 представлены на рис. 5, где 1 – детерминированные 
значения параметров, а 2–5 – уровни вероятности/степени уверенности 0.6, 0.7, 0.8, 0.9.

С увеличением уровней вероятности и степеней уверенности Парето-фронты смещаются в 
область “худших” значений целевых функций. Для обеспечения надежности проектных реше-
ний с заданной степенью уверенности проектировщику требуется выбирать точки на Парето-
фронтах 2–5. Следует отметить, что существующие в настоящее время легкие пассажирские 
самолеты не соответствуют Парето-фронту под номером 1, полученному по детерминирован-
ной модели. Более актуальной является степень уверенности 0.8–0.9.

Для сравнения применим оптимизационную модель, когда недетерминированные пара-
метры задаются только функциями распределения вероятности. При этом форма функций 

Рис. 6. Результат расчета по модели 14 со случайными параметрами.
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распределения вероятности совпадает с формой функций распределения неопределенности, 
используемых при расчетах по модели 13.

Модель 14:
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Результаты расчета по модели 14 представлены на рис. 6, где 1 – детерминированные зна-
чения параметров, а 2–5 – уровни вероятности 0.6, 0.7, 0.8, 0.9.

Сравнение рис. 5 и 6 показывает, что в результате замены неопределенных величин слу-
чайными и отказа от теории неопределенности формируются менее надежные проектные ре-
шения.

Заключение. Модели, предложенные в работе, позволяют гибко формировать требования 
к проектируемому объекту в условиях неопределенности при формализации оптимизацион-
ных задач параметрического синтеза. Показано, что надежность проектных решений может 
эффективно контролироваться с использованием вероятностных и неопределенных ограни-
чений. Уровни вероятности/степени уверенности и гарантированные диапазоны значений 
целевых функций взаимосвязаны. Полученные результаты согласуются с инженерной прак-
тикой решения задач RBDO. Увеличение требований к надежности проектных решений тре-
бует расширения допустимых диапазонов значений целевых функций. Для подтверждения 
адекватности теоретических выкладок приведены примеры решения задач синтеза парамет-
ров силовой установки и весовых параметров летательного аппарата. Результаты расчетных 
исследований показали перспективность применения оптимизационных моделей, в которых 
учитывается надежность проектных решений, на этапе концептуального проектирования ле-
тательных аппаратов.
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