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При разработке сложных систем технического назначения представляет интерес задача аппрокси-
мации той части множества слабо эффективных векторных оценок (множества Слейтера), которая 
соответствует достоверной информации об относительной важности частных критериев эффектив-
ности. Универсальная вычислительная процедура аппроксимации множества Слейтера при исполь-
зовании поступающей в интерактивном режиме информации о ранжировании частных критериев 
по важности позволяет целенаправленно строить слабо эффективные решения, соответствующие 
предпочтениям и возможностям разработчиков.
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When developing complex systems for technical purposes, of interest is the problem of approximating that 
part of the set of weakly efficient vector estimates (the Slater set), which corresponds to reliable information 
about the relative importance of particular efficiency criteria. The universal computational procedure for 
approximating the Slater set, using the information on the ranking of particular criteria by importance 
that comes in the interactive mode, makes it possible to purposefully build weakly efficient solutions that 
correspond to the preferences of the developers.
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Введение. В качестве решения задачи многокритериальной оптимизации рассматривают 
множество Парето или включающее его множество Слейтера. При альтернативном подходе 
решением многокритериальной задачи объявляется оптимум некоторой скалярной свертки 
векторного критерия эффективности, где свертка имеет вид скалярной функции, зависящей 
как от частных критериев эффективности, так и от внешних параметров, которые в ряде слу-
чаев можно интерпретировать в качестве коэффициентов важности частных критериев эф-
фективности [1]. Определить точные значения коэффициентов важности при решении прак-
тических задач удается, вообще говоря, в исключительных случаях. Вместе с тем информация 
об относительной важности частных критериев может быть вполне надежной, и тогда ее сле-
дует учитывать также и при первом подходе (например, при построении множества Слейтера).

Универсальная процедура аппроксимации множества Слейтера [2] представляет собой 
стартующий из начальной точки (или группы точек) ветвящийся итеративный процесс, по-
рождающий предельное множество векторных оценок, которое содержится в множестве 
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Слейтера и включает множество Парето. Требования к множеству допустимых решений и 
критериальным функциям являются стандартными для задач скалярной условной оптимиза-
ции. Вместе с тем итеративный (поэтапный) характер универсальной процедуры позволяет 
на любых ее этапах учитывать заявленные лицами, принимающими решения, ранжирования 
частных критериев эффективности по важности. То, что ранжирования могут меняться при 
переходе с одного этапа процедуры на другой, от одного опорного решения к другому, есте-
ственным образом учитывается при реализации процедуры.

Использование информации об относительной важности критериев существенно сужает 
предельное множество векторных оценок. В зависимости от того, какие конкретно поряд-
ковые меры важности критериев последовательно учитываются на всех этапах универсальной 
процедуры, предельное множество может представлять собой только некоторую часть множе-
ства Слейтера либо даже одну слабо эффективную векторную оценку. В любом случае реше-
ния, порождающие подобные векторные оценки, будут соответствовать выявленным предпо-
чтениям лиц, принимающих решения.

1. Постановка задачи. Пусть в s – мерном евклидовом пространстве Rs задана m – мерная 
непрерывная вектор-функция

	 ( ) mw x ∈R 	 (1.1)

– вектор частных критериев эффективности, принимающий на непустом компактном мно-
жестве допустимых решений (допустимом множестве)

	 sX ⊂ R 	 (1.2)

положительные значения, так что множество достижимых векторных оценок

	 ( ) ( ){ }, intm mw X u u w x x X += ∈ = ∈ ⊂R R 	 (1.3)

принадлежит внутренности int R+
m неотрицательного ортанта R+

m. Без потери общности пола-
гаем, что каждую компоненту wk(x), k = 1, m, векторного критерия (1.1) желательно увеличи-
вать на допустимом множестве (1.2).

О п р е д е л е н и е  1 .  Векторная оценка w ∈ w(X ) эффективна (слабо эффективна), если для 
всякой векторной оценки u ∈ w(X ) система неравенств u ≥ w несовместна при условии, что хотя 
бы одно неравенство строгое (все неравенства строгие).

Если u, w ∈ w(X ), то векторная оценка w доминируема .
Всякое допустимое решение x ∈ X, доставляющее эффективное (слабо эффективное, доми-

нируемое) значение вектора w(x), называется эффективным (слабо эффективным, доминируе
мым) решением.

Согласно определению 1, эффективная векторная оценка слабо эффективна, достижимая 
векторная оценка w ∈ w(X ) либо слабо эффективна, либо доминируема, множества эффек-
тивных Xe, слабо эффективных X0 и доминируемых Xд решений из множества допустимых 
решений X подчиняются соотношениям:

	 0 0 0, , ,eX X X X X X X X∂ ∂⊂ ⊂ ∩ = ∅ = ∪

где ∅ – пустое множество, ∪(∩) – символ объединения (пересечения) множеств. Соответ-
ственно w(Xe), w(X0), w(Xд), w(X ) – множества эффективных, слабо эффективных, доминируе
мых и достижимых векторных оценок удовлетворяют соотношениям:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,0 0 0ew X w X w X w X w X w X w X w X∂ ∂⊂ ⊂ ∩ = ∅ = ∪ 	 (1.4)

где w(Xe), w(X0) – множества Парето и Слейтера соответственно.
Сформулируем также следующие определения.
О п р е д е л е н и е  2 .  Величина
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	 ( ), sup inf , , ,m

u Uw W
D W U w u W U

∈∈
= − ∅ ≠ ⊂ R

называется отклонением множества W от множества U, а величина

	 ( ) ( ) ( ){ }, max , , , , , ,mW U D W U D U W W U∆ = ∅ ≠ ⊂ R

– расстоянием по Хаусдорфу между W и U, где ||·|| – норма вектора в Rm.
О п р е д е л е н и е  3 .  Заданная на выпуклом множестве A ⊂ Rs функция f называется w – 

вогнутой на A, если для любых фиксированных x, y ∈ A при условии f (y) ≥ f (x) можно указать 
такую величину w = w(x, y) ∈ (0, 1], что для любого r ∈ (0, 1) выполняется неравенство:

	 ( )( ) ( ) ( ) ( ).1 1f y x f y f xr + − r ≥ rw + − rw

О п р е д е л е н и е  4 .  Заданная на выпуклом множестве A ⊂ Rs функция f удовлетворяет на  
условию Липшица, если существует такая константа q > 0, что для любых x, y ∈ A выполняется 
условие |  f (y) – f (yx)| ≤ q|| y – x ||.

В условиях (1.1)–(1.3) множество Слейтера согласно работам [1, 2] можно представить 
в виде:
	 ( )

( )
( )max , ,0 Arg

m
w w X

w X f w
∈l∈L

= l


	 (1.5)

	
( )

( ) ( )
( )

( )Arg max , , max ,
w w X u w X

f w w W f w f ul
∈ ∈

  l = ∈ l = 
  

где скалярная функция (обобщенная логическая свертка)

	 ( ) { }1
11, , 0

, min , 1, 0
k

mm
k k m kkk m

f w w−
== l >

l = l l ∈L = l ∈ l = l ≥∑R 	 (1.6)

зависит от векторного параметра l  ∈ Lm ⊂ Rm, принадлежащего (m – 1)-мерному стандартно-
му симплексу Lm = conv{ek}m

k = 1 – выпуклой оболочке векторов ортонормированного базиса 
{ek}m

k = 1 в евклидовом пространстве Rm. Компоненты {lk}m
k = 1 вектора l имеют в скалярной 

свертке (1.6) смысл коэффициентов важности (весовых коэффициентов) соответствующих 
частных критериев {wk}m

k = 1.
Пусть о коэффициентах важности l получена (например, в результате экспертизы) досто-

верная информация, позволяющая сузить априорное множество Lm = conv{ek}m
k = 1, заменив его 

более точным непустым подмножеством Lинф, так что можно утверждать:

	 { }инф инф инф1
conv , .

nq
mq=

l = L = l ∅ ≠ L ⊂ L ≠ L 	 (1.7)

В этих условиях нет необходимости строить множество Слейтера w(X0) из (1.5) целиком. 
Достаточно, в согласии с дополнительной информацией (1.7), найти его более “узкое” под-
множество:

	
( )

( )
, ,

max min ,
инф

1
инф 0

1 0
Arg

k
k k

k mw w X
w w w X−

= l >∈l∈L

= l ⊂


	 (1.8)

где включение в (1.8) с учетом (1.5) вытекает из последнего включения в (1.7).
2. Об упорядочивании частных критериев эффективности. При измерении относительной 

важности (ценности) абстрактных объектов [3] существенную роль играют порядковые меры 
важности.

П р и м е р  1.  Предположим, что все частные критерии эффективности удается ранжиро
вать – расположить в порядке убывания важности, так что без ограничения общности можно 
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утверждать, что каждый последующий частный критерий эффективности не превосходит по 
важности предыдущий:
	   1, 1, 1.k kw w k m+ = − 	 (2.1)

С формальной точки зрения это означает, что на множестве пар объектов (пар частных 
критериев эффективности {Wk}m

k=1  в нашем случае) установлен линейный квазипорядок (реф
лексивное, транзитивное и линейное бинарное отношение нестрогого предпочтения), а коэф-
фициенты важности критериев соответствуют порядковой мере важности:

	 1, 1, 1.k k k m+l ≥ l = − .

Эта дополнительная информация позволяет уточнить коэффициенты важности по сравне-
нию с априорным утверждением l ∈ Lm из (1.6):

	 { }  

  

инф 1 1
1

1

1

1, 0, 1, 1 = conv ,

, 1, ,

m mm q
k k k q

k

q
q k

k

k m

q e q m

+ =
=

−

=

  l ∈L = l ∈ l = l ≥ l ≥ = − l 
  

l = =

∑

∑

R 	 (2.2)

так что уточняющее множество l ∈ Lинф может быть приведено в виде (1.7).
Среди других используемых мер важности частных критериев [3] представляет интерес сле-

дующая частичная порядковая мера важности.
П р и м е р  2 .  Пусть для частных критериев эффективности {Wk}m

k=1 не удается опреде-
лить линейный квазипорядок, подобный (2.1), но можно указать непустое подмножество 
{ } { }  , |� 1, ,k k K

w K I k k m∈ ∅ ≠ ⊂ = =  каждый критерий которого превосходит по важности любой 
критерий дополнения – подмножества {wk}k ∈ I  \K, так что на множестве пар частных критериев 
эффективности {Wk}m

k=1 определен следующий частичный квазипорядок:

	 , , \ ,k iw w k K i I K∈ ∈ 	 (2.3)

а на множестве коэффициентов важности критериев устанавливается соответствующая ча-
стичная порядковая мера важности:

	       инф
1

1, , , \ .
m

m
k k i

k

k J j I J
=

  l ∈L = l ∈ l = l ≥ l ∈ ∈ 
  

∑R

3. Построение информационного множества. Согласно соотношениям (1.5), (1.6), (1.8), обе 
задачи: исходная задача построения множества Слейтера w(X0) и задача построения инфор-
мационного множества Wинф, могут быть решены одним и тем же методом. В основу метода 
положена [4] логическая свертка (1.6) векторного критерия (1.1) в скалярный критерий. Раз-
ница заключается лишь в том, что для аппроксимации множества Слейтера на основе пред-
ставления (1.5) некоторая e – сеть Le, в узлах которой предстоит решать задачу скалярной 
условной оптимизации:

	

( )
( )

( ) { }
 , ,

, ,  ,

, ,  ,1

11 0 1

max

min max min
k

w w X

Ni i i
k k ik m i N

f w

f w w

e
∈

−
e =≤ ≤ l > l∈W =

l → l ∈ L

 l = l L = l = l ∈W l − l ≤ e 
 

	 (3.1)

накладывается на весь стандартный симплекс W = Lm, а при аппроксимации информаци-
онного множества e – сеть накладывается в согласии с (1.8) только на часть стандартного 
симплекса W = Lинф ⊂ Lm. Если множество Lинф определяет порядковая мера важности, то в 
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согласии с (2.2) его (m–1) – мерный объем меньше в m! раз объема стандартного симплекса 
Lm, так что для достижения одинаковой точности аппроксимации e – сеть Le = {li}N

i = 1, покры-
вающая Lинф, может содержать в m! раз меньше точек, чем при покрытии всего стандартного 
симплекса. Это обеспечивает существенную экономию вычислительных средств, если число 
критериев m велико.

Следует вместе с тем указать, что предложенный метод учета информации об упорядочен-
ности критериев страдает тем недостатком, что порядок важности присваивается критериям 
раз и навсегда. Однако численные методы решения оптимизационных задач обычно представ-
ляют собой итерационную (пошаговую) процедуру перехода от предыдущего опорного реше-
ния к последующим, так что, если порядковая мера важности критериев определяется в ходе 
экспертизы, ранжирование критериев может существенным образом зависеть от того, какие 
значения векторного критерия (1.1) рассматриваются в каждый момент в качестве опорных.

В самом деле, пусть на множестве w(X ) в (1.3) задан набор оценок:

	
1

, 1,2, ,
m

q k
k

k

w w e q∗

=

≤ =∑ 

где ( )      * max , 1, ,k k
x X

w w x k m
∈

= =  – рекордные значения критериев эффективности. Тогда эксперт-
ное мнение может измениться кардинально в зависимости от того, какая из векторных оценок 
w q предъявлена эксперту.

П р и м е р  3 .  Пусть m = 2, векторные оценки w1, w2 ∈ R2 таковы, что

	 1 1 2 2 1 2
1 2 1 20.1 0.9 , 0.1 0.9 ,w w e w e w w e w e∗ ∗ ∗ ∗= + = +

так что оценка w1 по первому критерию далека от рекордной, а по второму критерию близка, 
тогда как с оценкой w2 ситуация противоположная. При предъявлении эксперту оценки w1 
он может заключить, что первый критерий следует “подтянуть”, так что он важнее второго, 
w1  w2; при предъявлении оценки w2 результат может оказаться противоположным, w2  w1.

В этой связи переход от предыдущего шага итеративной процедуры к последующим может 
потребовать пересмотра решения об упорядоченности критериев, для чего экспертизу прихо-
дится проводить в интерактивном режиме, к чему численные методы вида (3.1) не слишком 
приспособлены.

Затруднения подобного рода отсутствуют, если применяются методы отыскания слабо эф-
фективных векторных оценок, не использующие прием скаляризации векторного критерия 
[2, 5]. Дадим, согласно [2], формальное описание универсальной процедуры аппроксимации 
множества Слейтера.

4. Универсальная процедура аппроксимации множества Слейтера.  На непустом компактном 
множестве допустимых решений X ⊂ Rs строится последовательность множеств {Xt}∞t = 1 ⊂ X. 
Если {x1} ⊂ X1 ⊂ X – произвольное начальное приближение, и известно множество Xt,  t  ≥ 1, то 
следующее за ним множество Xt + 1 подчиняется соотношениям:

	 ( ) ( ) { } ( ){ }
( )

   1 1 1, , .

t t

t t t
x X J M x

X X x X x x h x J X+ + +
∈ ∈

= = + ⊂
 

	 (4.1)

Согласно (4.1), всякое опорное решение  порождает на t + 1-м этапе непустую векторную 
сумму множеств Xt + 1(x), причем направление h(x, J ) перехода от опорного решения x ∈ Xt к лю-
бому последующему решению ( )1( , ) , ( )J

t ty x h x J X x J x+= + ∈ ∈M  определяется единственным 
образом и удовлетворяет условиям:

	 ( ) ( ) { }, , , , ,0 0 1h x h x J J I k k m∅ = ≠ ∅ ≠ ⊂ = = 	 (4.2)

тогда как ненулевые направления ( ), 0h x J ≠  подчиняются соотношениям:
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R

R
	 (4.3)

Последовательность множеств (4.1) ветвится в каждой опорной точке x ∈ Xt, причем степень 
ее ветвления |Mt(x)| определяет множество не вложенных друг в друга подмножеств |Mt(x)| ⊂ 2I, 
заданное следующими соотношениями:
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Наибольшая степень ветвления последовательности (4.1) совпадает с наибольшим числом 
не вложенных друг в друга подмножеств множества номеров частных критериев эффективно-
сти I = {k | k = 1, m}, так что

	 ( ) ( )
! ,

!2 2
t

mx
m mm

≤
   −   

M  	 (4.5)

где | A | – число элементов в конечном множестве A, Z – целая часть числа Z.
Соотношения (4.3), (4.4) включают величину e = et(x) ∈ (0, 1) – параметр возмущения, кото-

рый в начальной точке x1 и в любых последующих точках xt ∈ Xt, xt +1 ∈ Xt +1(xt)последователь-
ности (4.1), таких, что

	 ( ) ( ), , ,1t t t
t t tx x h x J J x+ = + ∈M  	 (4.6)

удовлетворяет условиям:

	 ( ) ( ) ( ) ( )
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( ) ( ),

,
q t

q t

t q

q t x x

Q J

≤ e =e

=


где величина k  определяет степень дробления параметра возмущения. Эта величина может 
быть выбрана любой в интервале (0, 1), но является фиксированной на протяжении всей вы-
числительной процедуры.

В согласии с доказательством из работы [2] заданная соотношениями (4.1)–(4.7) последо-
вательность множеств {w(Xt)}∞

t =1 аппроксимирует множество Слейтера в следующем смысле.
Т е о р е м а .  Пусть в соотношении (1.1) компоненты вектор–функции w ∈ Rm положитель-

но определены, удовлетворяют условию Липшица и w – вогнуты в открытой окрестности не-
пустого выпуклого компакта X. Тогда отклонение множества Парето w(Xe) от аппроксимирую
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щего множества w(Xt ) и отклонение множества w(Xt ) от множества Слейтера w(X0) стремятся 
к нулю с ростом номера аппроксимации t:

	 ( ) ( )( ) ( ) ( )( )0lim , lim , 0.e t t
t t

D w X w X D w X w X
→∞ →∞

= =

С л е д с т в и е .  Если множества Парето и Слейтера совпадают, w(Xe) = w(X0), то последова-
тельность аппроксимирующих множеств стремится к множеству Слейтера в метрике Хаусдор-
фа, ( ) ( )( )0lim , 0.t

t
w X w X

→∞
∆ =

5. Учет информации об упорядоченности критериев. Итеративная структура универсальной 
процедуры (4.1)–(4.7) позволяет осуществлять переход от текущего опорного решения x ∈ Xt 
к последующим:
	 ( ) ( ) ( ), , ,1

J
t ty x h x J X x J x+= + ∈ ∈M

в интерактивном режиме с учетом принятого для данного опорного решения x ∈ Xt упорядо-
чения частных критериев по важности. Для этого требуется скорректировать правило (4.4) 
формирования множеств Mt(x).

Л и н е й н ы й  к в а з и п р о я д о к .  Пусть на каждом шаге t для соответствующей опорному 
решению x ∈ Xt векторной оценки

	 ( ) ( )
1

m
k

k
k

w x w x e
=

= ∑

частные критерии могут быть перенумерованы в согласии с линейным квазипорядком:

	 ( ) ( ), , 1 , 1, 1,k x i k x iw w i m+ = − 	 (5.1)

где {k(x, i)}m
i =1 – перестановка исходной нумерации критериев {k}m

i =1, так что всякий критерий 
wk(x, i)  не уступает по важности критериям {wk(x, i+c)}c

m
=1
– i.

Тогда множество Mt(x), определяющее, согласно соотношениям (4.1)–(4.4), новые опор-
ные решения Xt +1(x), следует задать в виде:
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M 	 (5.2)

Из соотношений (5.2) следует, что множество Mt(x) содержит единственный элемент: либо 
пустое множество ∅, либо множество {k(x, i)}r

i =1 первых r номеров в перестановке, что позво-
ляют выстроить множество Mt(x) конструктивно. В самом деле, для вычисления величины r 
достаточно проверить последовательно выполнение условий

	 ( ){ } ( ) ( )
 

,
, ,  ,  ,  

1

1q

i
k x i

X Y x Y x q m
=

∩ e ∩ e ≠ ∅ = ,	 (5.3)

и остановиться, как только возникнет ситуация

	
( ){ } ( ) ( )

( ){ } ( ) ( )1
1 1

, ,
, , , , ,r r

i i
k x i k x i

X Y Xx Y Yx x Y x+
= =

∩ ∩e ∩ e ≠ ∅ e ∩ e ≠ ∅ ,

когда первые r критериев по порядку (5.1) согласно (4.3), (5.2) еще можно улучшить относи-
тельно текущего значения на величину ~e2, а первые r + 1 – уже нет; если все пересечения (5.2) 
не пусты, то ( ) { }, t x Ir m= =M .
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В организованной таким образом процедуре ветвление отсутствует (поскольку вектор h(x, J) 
в соотношениях (4.3) определяется единственным образом). Таким образом, последователь-
ность (4.1) есть последовательность точек {x t}∞

t =1, если для каждой опорной точки x = x t может 
быть получен тот или иной линейный квазипорядок (5.1). В условиях теоремы справедливо 
следующее утверждение.

У т в е р ж д е н и е  1 .  Множество предельных точек Xинф последовательности {x t}∞
t =1, задан-

ной соотношениями (4.1)–(4.3), (4.5)–(4.7), (5.1), (5.2), составлено из слабо эффективных 
решений, Xинф ⊂ X0, а соответствующее информационное множество вложено во множество 
Слейтера, Wинф = w(Xинф) ⊂ w(X0).

Утверждение 1 следует из доказательства теоремы сходимости [5].
Пусть на некотором шаге t процедуры для соответствующей векторной оценки

	 ( ) ( )
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m
k

k
k

w x w x e
=

= ∑

частные критерии эффективности не удается ранжировать в согласии линейным квазипоряд-
ком, однако установлен частичный квазипорядок.

Ч а с т и ч н ы й  к в а з и п о р я д о к .  Согласно (2.3), в опорной точке x ∈ Xt выполняются 
соотношения , , \k i t tw w k K i I K∈ ∈ : каждый критерий множества {wk}k ∈ Kt

 не уступает по 
важности любому из критериев дополнения {wk}k ∈ I \Kt

.
Множество Mt(x), определяющее согласно соотношениям (4.1)–(4.4) новые опорные реше-

ния Xt +1(x), в данных условиях следует задать в виде:
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В процедуре, заданной соотношениями (4.1)–(4.3), (4.5)–(4.7), (5.1), (5.4), ветвление на 
этапе t имеет место, как и в исходной, однако в условиях частичного квазипорядка степень 
ветвления существенно меньше в сравнении с (4.5),

	 ( ) ( )
!

,
2 ! 2 !

t

t t t
t

K

K
x

K K
≤

   −   
M 	 (5.5)

поскольку зависит лишь от количества |Kt | более важных критериев: при |Kt | = 3 степень ветвле-
ния |Mt (x)| ≤ 3 в согласии с (5.5). Тем самым разработчики могут от этапа к этапу варьировать 
как состав, так и число |Kt | более важных критериев в зависимости от доступности вычисли-
тельных мощностей.

Для частичных квазипорядков выполняется подобное утверждению 1 следующее утвержде-
ние.

У т в е р ж д е н и е  2 .  Множество предельных точек Xинф последовательности множеств 
{Xt}∞

t =1 ⊂ X, заданной соотношениями (4.1)–(4.3), (4.5)–(4.7), (5.1), (5.4), составлено из сла-
бо эффективных решений, Xинф ⊂ X0, а соответствующее информационное множество 
Wинф = w(Xинф) вложено во множество Слейтера.

З а м е ч а н и е .  Утверждение 2 остается справедливым, если на одних этапах процедуры 
удается задать линейный квазипорядок, а на прочих – частичный.

Заключение. Задача построения информационного множества исследовалась на основе 
предложенной в работе [2] универсальной вычислительной процедуры при следующих пред-
положениях: компонентами вектора частных критериев эффективности являются функции, 
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которые положительно определены, удовлетворяют условию Липшица и w – вогнуты в откры-
той окрестности непустого выпуклого компакта – множества допустимых решений X. Пока-
зано, что основанные на скаляризации векторного критерия методы продуктивны, если для 
частных критериев может быть принят неизменный порядок важности, никак не связанный с 
меняющимися в ходе вычислительного процесса векторными оценками эффективности.

При необходимости соотносить ранжирование критериев с достигнутым значением оцен-
ки эффективности могут применяться методы, основанные на универсальной вычислитель-
ной процедуре [2]. Если на каждом шаге процедуры критерии удается ранжировать согласно 
линейному квазипорядку, процедура не ветвится; она задает последовательность векторных 
оценок, множество предельных точек которой принадлежит множеству Слейтера, Wинф ⊂ w(X0). 
Если определяются лишь частичные квазипорядки, ветвление вычислительной процедуры 
оказывается подавленным, а множество предельных точек также принадлежит множеству 
Слейтера, Wинф ⊂ w(X0).
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