RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Теория и системы управления Journal of Computer and System Sciences International

  • ISSN (Print) 0002-3388
  • ISSN (Online) 3034-6444

ON OSCILLATIONS OF A QUADROTOR-SLUNG PENDULUM WITH A CAVITY PARTIALLY FILLED WITH LIQUID

PII
S30346444S0002338825020117-1
DOI
10.7868/S3034644425020117
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
166-176
Abstract
Dynamics of a pendulum suspended to a quadrotor and having a spherical cavity partially filled with the ideal liquid is considered. It is supposed that the system moves in the vertical plane. The drag force acting on the pendulum is taken into account. In order to simulate oscillations of the liquid inside the cavity, a phenomenological “pendulum” model is used. An algorithm for constructing the quadrotor acceleration control is proposed that ensures the transition of the system to the steady horizontal flight with the speci ed speed along with damping of oscillations of both the pendulum and the liquid inside it (including in the presence of a constant wind).
Keywords
квадрокоптер маятник колебания управление полость с жидкостью
Date of publication
24.02.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Omar H.M., Akram R., Mukras S.M.S., Mahvouz A.A. Recent Advances and Challenges in Controlling Quadrotors with Suspended Loads // Alexandria Engineering J. 2022. V. 63. P. 253-270. https://doi.org/10.1016/j.aej.2022.08.001
  2. 2. Estevez J., Garate G., Lopez-Guede J.M., Larrea M. Review of Aerial Transportation of Suspended-Cable Payloads with Quadrotors // Drones. 2024. V. 8. № 2. P. 35. https://doi.org/10.3390/drones8020035
  3. 3. Xian B., Wang S., Yang S. An Online Trajectory Planning Approach for a Quadrotor UAV with a Slung Payload // IEEE Trans. Ind. Electron. 2019. V. 67. P. 6669-6678. https://doi.org/10.1109/TIE.2019.2938493
  4. 4. De Angelis E.L., Giulietti F., Pipeleers G. Two-Time-Scale Control of a Multirotor Aircraft for Suspended Load Transportation // Aerosp. Sci. Technol. 2019. V. 84. P. 193-203. https://doi.org/10.1016/j.ast.2018.10.012
  5. 5. Sun L., Wang K., Mishamandani A.H.A., Zhao G., Huang H., Zhao X., Zhang B. A Novel Tension-Based Controller Design for the Quadrotor-Load System // Control Eng. Pract. 2021. V. 112. P. 104818.
  6. 6. Baraean A., Hamanah W.M., Bawazir A., Quama M.M., El-Ferik S., Baraean S., Abido A.M. Optimal Nonlinear Backstepping Controller Design of a Quadrotor-Slung Load System Using Particle Swarm Optimization // Alexandria Engineering J. 2023. V. 68. P. 551-560. https://doi.org/10.1016/j.aej.2023.01.050
  7. 7. Kong L., Reis J., He W., Yu X., Silvestre C. On Dynamic Performance Control for a Quadrotor-Slung-Load System with Unknown Load Mass // Automatica. 2024. V. 162. P. 111516. https://doi.org/10.1016/j.automatica.2024.111516
  8. 8. Goodarzi F.A., Lee D., Lee T. Geometric Control of a Quadrotor UAV Transporting a Payload Connected via Flexible Cable // Int. J. Control. Autom. Syst. 2015. V. 13. P. 1486-1498. https://doi.org/10.1007/s12555-014-0304-0
  9. 9. Chang P., Yang S., Tong J., Zhang F. A New Adaptive Control Design for a Quadrotor System with Suspended Load by an Elastic Rope // Nonlinear Dyn. 2023. V. 111. P. 19073-19092.
  10. 10. Kaya U.C., Subbarao K. Momentum Preserving Simulation of Cooperative Multirotors with Flexible-Cable Suspended Payload // J. Dyn. Syst. Meas. Control. 2022. V. 144. P. 041007. https://doi.org/10.1115/1.4053343
  11. 11. Wu P.X., Yang C.C., Cheng T.H. Cooperative Transportation of UAVs Without Inter-UAV Communication // IEEE/ASME Trans. Mechatron. 2023. V. 28. P. 2340-2351. https://doi.org/10.1109/TMECH.2023.3234511
  12. 12. Bisgaard M., Bendtsen J.D., La Cour-Harbo A. Modeling of Generic Slung Load System // J. Guid. Control. Dyn. 2009. V. 32. № 2. P. 433-449. https://doi.org/10.2514/1.36539
  13. 13. Куликов В.Е., Чукаева А.Н. Система управления квадрокоптером при транспортировке груза на внешней подвеске // Тр. Московск. ин-та электромеханики и автоматики. 2016. Т. 14. С. 2-16.
  14. 14. Sun L., Wang K., Mishamandani A.H.A., Zhao G., Huang H., Zhao X., Zhang B. A Novel Tension-Based Controller Design for the Quadrotor-Load System // Control Eng. Pract. 2021. V. 112. P. 104818.
  15. 15. Голуб А.П., Зудов В.Б., Локшин Б.Я., Селюцкий Ю.Д. О робастной стабилизации движения квадрокоптера с подвешенным грузом // Мехатроника, автоматизация, управление. 2024. Т. 25. № 9. С. 490-500. https://doi.org/10.17587/mau.25.490-500
  16. 16. Охоцимский Д.Е. К теории движения тел с полостями, частично заполненными жидкостью // ПММ. 1956. Т. 20. Вып. 1. С. 3-20.
  17. 17. Abramson H.N., Chu W.H., Ransleben G.E. Representation of Fuel Sloshing in Cylindrical Tanks by an Equivalent Mechanical Model // ARS Journal. 1961. V. 31. № 12. P. 1697-1705.
  18. 18. Колесников К.С. Колебания жидкости в цилиндрическом сосуде. М.: Изд-во МВТУ им. Н.Э. Баумана, 1964. 97 с.
  19. 19. Stofan A.J., Armstead A.L. Analytical and Experimental Investigation of Forces and Frequencies Resulting from Liquid Sloshing in a Spherical Tank. Washington: NASA. 1962. Technical Note D-1281.
  20. 20. Abramson H.N., Chu W.H., Garza L.R. Liquid Sloshing in Spherical Tanks // AIAA Journal. 1963. V. 1. № 2. P. 384-389. https://doi.org/10.2514/3.1542
  21. 21. Chu W.H. Fuel Sloshing in a Spherical Tank Filled to an Arbitrary Depth // AIAA Journal. 1964. V. 2. № 11. P. 1972-1979. https://doi.org/10.2514/3.2713
  22. 22. Aliabadi S., Johnson A., Abedi J. Comparison of Finite Element and Pendulum Models for Simulation of Sloshing // Computers & Fluids. 2003. V. 32. № 4. P. 535-545. https://doi.org/10.1016/S0045-7930 (02)00006-3
  23. 23. Godderidge B., Turnock S.R., Tan M. A Rapid Method for the Simulation of Sloshing Using a Mathematical Model Based on the Pendulum Equation // Computers & Fluids. 2012. V. 57. P. 163-171. https://doi.org/10.1016/j.compfluid.2011.12.018
  24. 24. Moriello L., Biagiotti L., Melchiorri C., Paoli A. Manipulating Liquids with Robots: A Sloshing-Free Solution // Control Engineering Practice. 2018. V. 78. P. 129-141. https://doi.org/10.1016/j.conengprac.2018.06.018
  25. 25. Sayyaadi H., Soltani A. Modeling and Control for Cooperative Transport of a Slung Fluid Container Using Quadrotors // Chinese J. of Aeronautics. 2018. V. 31. № 2. P. 262-272. https://doi.org/10.1016/j.cja.2017.12.005
  26. 26. Колесников К.С. Динамика ракет. М.: Машиностроение. 1980. 376 с.
  27. 27. Ibrahim R.A. Liquid Sloshing Dynamics. Theory and Applications. Cambridge, 2005. 972 p.
  28. 28. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977. 650 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library