RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Теория и системы управления Journal of Computer and System Sciences International

  • ISSN (Print) 0002-3388
  • ISSN (Online) 3034-6444

PROGRAM CONTROL OF A SPACECRAFT WITH ELECTRIC PROPULSION ENGINES IN THE VICINITY OF AN ASTEROID

PII
S30346444S0002338825030049-1
DOI
10.7868/S3034644425030049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
37-45
Abstract
The article considers the control of the center of mass motion of a spacecraft with a low-thrust propulsion system in the vicinity of an irregularly shaped asteroid. Formation of the motion control program during mission planning is complicated by incomplete knowledge of the asteroid’s gravity. A superposition of N attractive points rotating with the asteroid’s own angular velocity at a constant distance can be used as a mathematical model of the asteroid’s gravitational potential. A preliminary study of the research object allows calculating the characteristics of such a model with two attractive centers. Software control in the vicinity of the asteroid for target maneuvers is formed on the basis of a combination of locally optimal control laws and the developed algorithm of relay switching between them with a dead zone. The developed algorithms and methods are illustrated by the results of modeling the spacecraft motion in the vicinity of the asteroid 433 Eros.
Keywords
космический аппарат электроракетный двигатель управление движением гравитационное поле неправильной формы астероид
Date of publication
21.04.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Полищук Г.М., Пичхадзе К.М. Автоматические космические аппараты для фундаментальных и прикладных научных исследований // М.: Изд-во МАИ-ПРИНТ, 2010. 659 c.
  2. 2. Estublier D., Saccoccia G., Gonzalez J. Electric Propulsion on SMART-1// ESA Bulletin. 2007. № 129. P. 40-46.
  3. 3. Sanctis De., Cristina M. Vesta’s Mineralogical Composition as Revealed by the Visible and Infrared Spectrometer on Dawn // Meteoritics & Planetary Science. 2013, V. 48. Iss. 11. P. 2166-2184.
  4. 4. Accomazzo A., Lodiot S., Companys V. Rosetta Mission Operations for Landing // Acta Astronautica. 2016. V. 125. P. 30-40.
  5. 5. Rayman M., Varghese P., Lehman D., Livesay L. Results from the Deep Space 1 Technology Validation Mission // Acta Astronautica. 2000. V. 47. Iss. 2-9. P. 475-487.
  6. 6. Foing B., Racca G., Marini A., Evrard E., Stagnaro L., Almeida M. et al. SMART-1 Mission to the Moon: Status, First Results and Goals // Advances in Space Research. 2006. V. 37. Iss. 1. P. 6-13.
  7. 7. Мартынов М.Б., Петухов В.Г. Концепция применения электроракетной двигательной установки в научных космических проектах: преимущества и особенности, примеры реализации // Вестн. НПО им. С.А. Лавочкина. 2011. № 2. C. 3-11.
  8. 8. Petukhov V.G., Konstantinov M.S., Vuk V.S. Simultaneous Optimization of the Low-thrust Trajectory and the Main Design Parameters of the Spacecraft // Advances in the Astronautical Sciences. 2017. V. 161. P. 639-653.
  9. 9. Слюта Е.Н. Форма малых тел Солнечной системы // Астрономический вестник. Исследования солнечной системы. 2014. Т. 48. № 3. 234 c.
  10. 10. Columbi E., Anil N., Hirani B., Benjamin F., Villaс F. Structure Preserving Approximations of Conservative Forces for Application to Small-Body Dynamics // Journal of Guidance, Control and Dynamics. 2009. V. 32. № 6. P. 1847-1858.
  11. 11. Эльясберг П.Е. Введение в теорию полета искусственных спутников Земли. М.: Наука, 1965. 540 с.
  12. 12. Starinova O.L., Shornikov A.Y., Nikolaeva E.A. Electrospinning and Electrospraying - Techniques and Applications: Using the iESP Installed on the Space Station Moving in an Irregular Gravitational Field of the Asteroids Eros and Gaspra. London: IntechOpen Limited, 2019. Chap. 5. P. 89-107.
  13. 13. Старинова О.Л. Расчет межпланетных перелетов космических аппаратов с малой тягой. Изд. 2-е. М.: ЛЕНАНД, 2020. 200 с.
  14. 14. Свидетельство о государственной регистрации программы для ЭВМ: “Моделирование движения КА с ЭРДУ, предназначенных для исследования малых тел Солнечной системы”. Патент № 2022612731; 28.02.2022.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library