- Код статьи
- S30346444S0002338825030146-1
- DOI
- 10.7868/S3034644425030146
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 3
- Страницы
- 152-176
- Аннотация
- Описываются механика, электроника и алгоритмы управления новым четырехногим шагающим роботом. Робот предназначен для сферы образования и исследовательской деятельности. Он имеет сравнительно малые массогабаритные показатели и построен с учетом модульности для упрощения производства и сборки. Робот приводится в движение с помощью бесколлекторных двигателей. Для их вращения используется векторное управление. В качестве базовой походки выбрана “рысь”. Алгоритм поддержания равновесия корпуса основан на методе управления точкой нулевого момента с прогнозированием. Формирование желаемой точки нулевого момента происходит с помощью отслеживания пересечения проекций концов диагонально расположенных ног. Программное обеспечение робототехнической платформы имеет полностью открытый исходный код. Для проверки работоспособности всех компонентов робота проведен ряд экспериментов как в виртуальной среде, так и на аппаратной платформе. Результаты экспериментов демонстрируют эффективность робота при ходьбе в разных направлениях с максимальной скоростью 1.2 м/с и грузоподъемностью вплоть до 7 кг, что практически равно собственному весу.
- Ключевые слова
- четырехногий робот динамическая ходьба бесколлекторный двигатель точка нулевого момента
- Дата публикации
- 16.10.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 16
Библиография
- 1. Гурфинкель В.С., Гурфинкель Е.В., Девянин Е.А., Ефремов Е.В., Жихарев Д.Н., Ленский А.В., Шнейдер А.Ю., Штильман Л.Г. Макет шестиногого шагающего аппарата с супервизорным управлением // Исследование робототехнических систем. М.: Наука, 1981.
- 2. Гришин А.А., Житомирский С.В., Ленский А.В., Формальский А.М. Управление ходьбой двуногого пятизвенного механизма // Изв. АН. ТиСУ 1999. № 6. С. 142-152.
- 3. Охоцимский Д.Е., Голубев Ю.Ф. Механика и управление движением автоматического шагающего аппарата. М.: Наука, 1984.
- 4. Raibert M.H., Tello E.R. Legged Robots that Balance. Cambridge: The MIT Press, 1986. https://doi.org/10.1109/MEX.1986.4307016
- 5. Hirose S., Umetani Y. Some Consideration on a Feasible Walking Mechanism as a Terrain Vehicle // Proc. to 3rd RoManSy Sympos. Udine: Elsevier, 1978.
- 6. Vaughan C.L., O’Malley M.J. Froude and the Contribution of Naval Architecture to our Understanding of Bipedal Locomotion // Gait & Posture. 2005. № 21 (3). P. 350-362. https://doi.org/10.1016/j.gaitpost.2004.01.011
- 7. Margolis G., Yang G., Paigwar K., Chen T., Agrawal P. Rapid Locomotion via Reinforcement Learning // Intern. J. Robotics Research. 2024. № 43 (4). P. 572-587. https://doi.org/10.1177/02783649231224053
- 8. Garsia G., Griffin R., Pratt J. Time-Varying Model Predictive Control for Highly Dynamic Motions of Quadrupedal Robots // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2021. https://doi.org/10.1109/ICRA48506.2021.9561913
- 9. Park H.W., Wensing P.M., Kim S. High-speed Bounding with the MIT Cheetah 2: Control Design and Experiments // The Intern. J. Robotics Research. 2017. № 36 (2). P. 167-192. https://doi.org/10.1177/0278364917694244
- 10. Semini C., Barasuol V., Focchi M., Boelens C., Emara M.E., Casella S. et al. Brief Introduction to the Quadruped Robot HyQReal // Intern. Conf. on Robotics and Intelligent Machines. Rome: IRIM, 2019.
- 11. Choi S., Ji G., Park J., Kim H., Mun J., Lee J. H., Hwangbo J. Learning Quadrupedal Locomotion on Deformable Terrain // Science Robotics. 2023. V. 8. № 74. https://doi.org/10.1126/scirobotics.ade2256
- 12. Rudin N., Hoeller D., Bjelonic M., Hutter M. Advanced Skills by Learning Locomotion and Local Navigation End-to-End // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2022. https://doi.org/10.1109/IROS47612.2022.9981198
- 13. Sleiman J.P., Farshidian F., Minniti M.V., Hutter M. A Unified MPC Framework for Whole-Body Dynamic Locomotion // IEEE Robotics and Automation Letters. 2021. № 6. P. 4688-4695. https://doi.org/10.1109/LRA.2021.3068908
- 14. Bjelonic M., Grandia R., Harley O., Galliard C., Zimmermann S., Hutter M. Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2021. https://doi.org/10.1109/IROS51168.2021.9636371
- 15. Valsecchi G., Rudin N., Nachtigall L., Mayer K., Tischhauser F., Hutter M. Barry: A High-Payload and Agile Quadruped Robot // IEEE Robotics and Automation Letters. 2023. № 8(11). P. 6939-6946. https://doi.org/10.1109/LRA.2023.3313923
- 16. Робот Spot фирмы Boston Dynamics. URL: https://bostondynamics.com/products/spot/
- 17. Робот B2 фирмы Unitree. URL: https://m.unitree.com/b2/
- 18. Робот Cyberdog фирмы Xiaomi. Unitree. URL: https://www.mi.com/global/discover/article?id=2069
- 19. Deep Robotics: официальный сайт. URL: https://www.deeprobotics.cn/en
- 20. Документация робота МОРС. URL: https://voltbro.gitbook.io/robot-sobaka-mors/
- 21. Kau N., Bowers S. Stanford Pupper: A Low-Cost Agile Quadruped Robot for Benchmarking and Education // ArXiv. abs/2110.00736. 2021.
- 22. Mudalige N.D.W., Zhura I., Babataev I., Nazarova E., Fedoseev A., Tsetserukou D. HyperDog: An Open-Source Quadruped Robot Platform Based on ROS2 and Micro-ROS // Intern. Conf. on Systems, Man, and Cybernetics (SMC). Prague, 2022. P. 436-441. http://doi: 10.1109/SMC53654.2022.9945526
- 23. Danilov V., Diane S. CPG-Based Gait Generator for a Quadruped Robot with Sidewalk and Turning Operations. Robotics in Natural Settings // CLAWAR. Lecture Notes in Networks and Systems. 2022. № 530. P. 276-288. 2023. https://doi.org/10.1007/978-3-031-15226-9_27
- 24. Katz B., Di Carlo J., Kim S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control // Intern. Conf. on Robotics and Automation (ICRA). Montreal: IEEE. 2019. P. 6295-6301. http://doi.org/10.1109/ICRA.2019.8793864
- 25. Katz B.G. A Low Cost Modular Actuator for Dynamic Robots: Master Thesis. Massachusetts Institute of Technology, 2018.
- 26. Прокол информационного обмена OpenCyphal. Официальный сайт. URL: https://opencyphal.org
- 27. Rekioua T., Tabar F.M., Le Doeuff R. A New Approach for the Field-Oriented Control of Brushless, Synchronous, Permanent Magnet Machines // Fourth Intern. Conf. on Power Electronics and Variable-Speed Drives. № 324. London, 1990. P. 46-50.
- 28. Bellini A., Bifaretti S., Costantini S. A Digital Speed Filter for Motion Control Drives with a Low Resolution Position Encoder // Automatika: Časopis za Automatiku, Mjerenje, Elektroniku, Računarstvo i Komunikacije. Zagreb, 2003. V. 44. № 1-2. P. 67-74.
- 29. Dunkels A. Design and Implementation of the lwIP TCP/IP Stack. Stockholm: Swedish Institute of Computer Science, 2001. V. 2. № 77.
- 30. Huang A.S., Olson E., Moore D.C. LCM: Lightweight Communications and Marshalling // IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems. Taipei: IEEE, 2010. P. 4057-4062.
- 31. ПО Universal RC Joystick. URL: https://github.com/Cleric-K/Universal-RC-Joystick
- 32. Quigley M., Gerkey B., Conley K., Faust J., Foote T., Leibs J. et al. ROS: An Open-Source Robot Operating System // ICRA Workshop on Open Source Software. 2009. V. 3. № 3.2. P. 5.
- 33. Katayama T., Ohki T., Inoue T., Kato T. Design of an Optimal Controller for a Discrete-time System Subject to Previewable Demand // Intern. J. Control. 1985. V. 41. № 3. P. 677-699. https://doi.org/10.1080/0020718508961156
- 34. Kajita S., Kanehiro F., Kaneko K., Fujiwara K., Harada K., Yokoi K., Hirukawa H. Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point // IEEE Intern. Conf. on Robotics and Automation. Taipei: 2003. V. 2. P. 1620-1626. https://doi.org/10.1109/ROBOT.2003.1241826
- 35. Huang W., Chew C.M., Zheng Y., Hong G.S. Pattern Generation for Bipedal Walking on Slopes and Stairs // 8th IEEE-RAS Intern. Conf. on Humanoid Robots. Daejeon: IEEE, 2008. P. 205-210. https://doi.org/10.1109/ICHR.2008.4755945
- 36. Kovalev A., Pavliuk N., Krestovnikov K., Saveliev, A.I. Generation of Walking Patterns for Biped Robots Based on Dynamics of 3D Linear Inverted Pendulum // Intern. Conf. on Interactive Collaborative Robotics. Istanbul: Springer International Publishing, 2019. P. 170-181. https://doi.org/10.1177/1729881417749672
- 37. Akbas T., Eskimez S.E., Ozel S., Adak O.K., Fidan K.C., Erbatur K. Zero Moment Point Based Pace Reference Generation for Quadruped Robots via Preview Control // 12th IEEE Intern. Workshop on Advanced Motion Control (AMC). Sarajevo: IEEE Press, 2012. P. 1-7. https://doi.org/10.1109/AMC.2012.6197117
- 38. Lee J.H., Park J.H. Turning Control for Quadruped Robots in Trotting on Irregular Terrain // Proc. 18th Intern. Conf. on Advances in Robotics, Mechatronics and Circuits. Santorini, 2014. P. 303-308.
- 39. Sheridan T.B. Three Models of Preview Control // IEEE Transactions on Human Factors in Electronics. 1966. № 2. P. 91-102. https://doi.org/10.1109/THFE.1966.232329
- 40. Физический симулятор PyBullet. Официальный сайт. URL: http://pybullet.org/
- 41. Nishii J. An Analytical Estimation of the Energy Cost for Legged Locomotion // J. Theoretical Biology. 2006. V. 238. № 3. P. 636-645. https://doi.org/10.1016/j.jtbi.2005.06.027