RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Теория и системы управления Journal of Computer and System Sciences International

  • ISSN (Print) 0002-3388
  • ISSN (Online) 3034-6444

PAIRWISE SIMILARITY METHOD FOR MAJORITY DOMINATION PROBLEM

PII
S30346444S0002338825050066-1
DOI
10.7868/S3034644425050066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
78-85
Abstract
The paper considers the problem of finding the number of dominant voters in two-level voting procedures. At the first stage, voting is conducted among local groups of voters, and at the second stage, the results are aggregated to form a final decision. The goal is to determine the minimum proportion of voters supporting a proposal for it to be accepted. The paper uses the method of pairwise comparisons to analyze the structure of the problem and develop heuristic algorithms with guaranteed accuracy. Special cases are considered, including the agent communication graph as a tree, complete graph, or regular graph with an odd number of vertices. New heuristic algorithms are proposed for each case, along with pairwise comparison functions to estimate the accuracy of the solution. Results extend the use of polynomial algorithms to a broader class of problems, providing criteria for selecting the optimal algorithm during the post-processing stage.
Keywords
метод попарного сходства двухуровневое голосование эвристический алгоритм регулярный граф полный граф граф дерево
Date of publication
09.12.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. Breer V.V., Novikov D.A., Rogatkin A.D. Mob Control: Models of Threshold Collective Behavior // 1st Edn. Cham: Springer International Publishing, 2017.
  2. 2. Chebotarev P., Peleg D. The Power of Small Coalitions Under Two-tier Majority on Regular Graphs // Discrete Applied Mathematics. 2023. V. 340. P. 239–258.
  3. 3. Broere I., Hattingh J.H., Henning M.A., McRae A.A. Majority Domination in Graphs // Discrete Mathematics. 1995. V. 138. №. 1–3. P. 125–135.
  4. 4. Yeh H.G., Chang G.J. Algorithmic Aspects of Majority Domination // Taiwanese J. Mathematics. 1997. V. 1. №. 3. P. 343–350.
  5. 5. Holm T.S. On Majority Domination in Graphs // Discrete Mathematics. 2001. V. 239. №. 1–3. P. 1–12.
  6. 6. Lemtyuzhnikova D., Chebotarev P., Goubko M., Shushko N. Pairwise Similarity Estimation for Discrete Optimization Problems // Advances in Systems Science and Applications. 2023. V. 23. №. 2. P. 164–177.
  7. 7. Шушко Н.Н. Метод попарного сходства для задачи двухровневого голосования // Интеллектуализация обработки информации: тез. локл. 15-й междунар. конф. Гродно. ГрГУ Беларусь, 2024.
  8. 8. Lazarev A.A., Lemtyuzhnikova D.V., Werner F. A Metric Approach for Scheduling Problems with Minimizing the Maximum Penalty // Applied Mathematical Modelling. 2021. V. 89. P. 1163–1176.
  9. 9. Lazarev A., Lemtyuzhnikova D., Providivets N., Werner F. Polynomially Solvable Subcases for the Approximate Solution of Multi-machine Scheduling Problems // Intern. Conf. on Optimization and Applications. Cham: Springer International Publishing, 2020. P. 211–223.
  10. 10. Lazarev A.A., Lemtyuzhnikova D.V., Providivets N.A. Metric Approach for Finding Approximate Solutions of Scheduling Problems // Computational Mathematics and Mathematical Physics. 2021. V. 61. P. 1169–1180.
  11. 11. Bukueva E., Kudinov I., Lemtyuzhnikova D. Analysis of the Feasibility to Use Metric Approach for NP-hard Makespan Minimization Problem // IFAC-PapersOnLine. 2022. V. 55. №. 10. P. 2898–2901.
  12. 12. Cheng T.C.E., Lazarev A., Lemtyuzhnikova D. A Metric Approach for the Two-station Single-track Railway Scheduling Problem // IFAC-PapersOnLine. 2022. V. 55. №. 10. P. 2875–2880.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library