RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Теория и системы управления Journal of Computer and System Sciences International

  • ISSN (Print) 0002-3388
  • ISSN (Online) 3034-6444

METHODS FOR CONSTRUCTING PREDICTOR ENSEMBLES BASED ON CONVEX COMBINATIONS

PII
S30346444S0002338825040064-1
DOI
10.7868/S3034644425040064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
94-102
Abstract
Constructing convex combinations of predictors is an effective method for building ensembles in solving regression problems. Herewith it seems possible to improve the final quality of the algorithm if an initial set of predictors is constructed in a special way. In this paper, we study two techniques that allow us to achieve such an improvement: bagging in combination with the random subspace method, and optimization of the divergence of predictors. The effectiveness of resulting methods is verified in applied problems.
Keywords
задача регрессии выпуклая комбинация предикторов оптимизация разброса ансамбля
Date of publication
05.05.2025
Year of publication
2025
Number of purchasers
0
Views
22

References

  1. 1. Zhou Z.H. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC. N. Y., 2012.
  2. 2. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer Series in Statistics. N. Y.: Springer, 2009.
  3. 3. Сенько О.В., Докукин А.А. Оптимальные выпуклые корректирующие процедуры в задачах высокой размерности // ЖВМ и МФ. 2011. Т. 51. № 9. С. 1751–1760.
  4. 4. Сенько О.В., Докукин А.А. Регрессионная модель, основанная на выпуклых комбинациях, максимально коррелирующих с откликом // ЖВМ и МФ. 2015. Т. 55. № 3. С. 530–544.
  5. 5. Senko O.V., Dokukin A.A., Kiselyova N.N., Dudarev V.A., Kuznetsova Yu.O. New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction // Lobachevskii Journal of Mathematics. 2023. V. 44. № 1. P. 188–197.
  6. 6. Докукин А.А., Сенько О.В. Новый двухуровневый метод машинного обучения для оценивания вещественных характеристик объектов // Изв. РАН ТиСУ. 2023. № 4. С. 17–24. https://doi.org/10.31857/S0002338823040029
  7. 7. Zhuravlev Yu.I., Senko O.V., Dokukin A.A., Kiselyova N.N., Saenko I.A. Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence // Doklady Mathematics. 2021. V. 104. № 1. P. 212–214.
  8. 8. Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V., Sen'ko O.V., Dokukin A.A. Application of Machine Training Methods to Design of New Inorganic Compounds // Diagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems / Eds X.A. Naidenova, D.I. Ignatov. Hershey: IGI Global, 2013. P. 197–220.
  9. 9. Breiman L. Random forests // Machine Learning. 2001. V. 45. № 1. P. 5–32.
  10. 10. Ho T.K. The Random Subspace Method for Constructing Decision Forests // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998. V. 20. № 8. P. 832–844.
  11. 11. Wolpert D.H. Stacked Generalization // Neural Networks. 1992. V. 5. № 2. P. 241–259.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library