RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Теория и системы управления Journal of Computer and System Sciences International

  • ISSN (Print) 0002-3388
  • ISSN (Online) 3034-6444

ASYMPTOTIC ANALYSIS OF CONTROL BASED ON THE LINEAR TANGENT LAW AT HIGH THRUST

PII
S30346444S0002338825050034-1
DOI
10.7868/S3034644425050034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
36-46
Abstract
The article considers the motion of the controlled object, which performs a high-speed maneuver in a plane with constant thrust. The purpose of the maneuver is to maximize the velocity of movement along a given straight line in a finite specified time. The linear tangent law is used as a control law. The limiting form of the function is determined as a cubic polynomial for the lateral projection of the coordinate and a quadratic polynomial for the lateral projection of the velocity at infinitely large thrust, the asymptotic behavior of the integration constants is analyzed. Numerical modeling is performed for the corresponding functions, alternative suboptimal controls are proposed.
Keywords
оптимальное управление траекторная оптимизация закон линейного тангенса большая тяга асимптотический анализ
Date of publication
11.12.2025
Year of publication
2025
Number of purchasers
0
Views
33

References

  1. 1. Lawden D.F. Dynamic Problems of Interplanetary Flight // Aeronautical Quarterly. 1955. V. 6. № 3. P. 165–180.
  2. 2. Lawden D.F. Optimal Rocket Trajectories // Jet Propulsion. 1957. V. 27. P. 1263.
  3. 3. Брайсон А., Хо Ю-ши. Прикладная теория оптимального управления. М.: Мир, 1972. 544 с.
  4. 4. Охоцимский Д.Е., Энеев Т.М. Некоторые вариационные задачи, связанные с запуском искусственного спутника Земли // УФН. 1957. Т. 63. № 1. С. 5–32.
  5. 5. Perkins F.M. Derivation of Linear-Tangent Steering Laws, Air Force Report No. SSD-TR-66-211 (Air Force Systems Command, Los Angeles, CA, 1966).
  6. 6. Reshmin S.A., Bektybaeva M.T. Accounting for Phase Constraints During Intensive Acceleration // Mechanics of Solids. 2024. V. 59. № 8. P. 3913–3928.
  7. 7. Zhou Y., Cholett M.E., Bhaskar A., Chung E. Optimal Vehicle Trajectory Planning With Control Constraints and Recursive Implementation for Automated On-Ramp Merging // IEEE Transactions on Intelligent Transportation Systems. V. 20. № 9. P. 3409–3420.
  8. 8. Wang Q., Ge H., Duan X., Zhou J. An Optimal Control Based Trajectory Planning Method for Cooperative Merging Maneuvers // Intern. Sympos. on Intelligent Robotics and Systems (ISoIRS). Changsha, China: IEEE, 2023. P. 28–33.
  9. 9. Gu M., Su Y., Wang C., Guo Y. Trajectory Planning for Automated Merging Vehicles on Freeway Acceleration Lane // IEEE Transactions on Vehicular Technology. 2024. V. 73. № 11. P. 16108–16124.
  10. 10. Голубев А.Е. Стабилизация программных движений механических систем с учетом ограничений // Изв. РАН. ТисУ. 2023. № 4. С. 111–125.
  11. 11. Бортаковский А.С. Быстродействие группы управляемых объектов // Изв. РАН. ТисУ. 2023. № 5. С. 16–42.
  12. 12. Решмин С.А., Бектыбаева М.Т. Учет фазового ограничения при управлении разгоном динамического объекта по модифицированному закону линейного тангенса // Тр. Института математики и механики УрО РАН. 2024. Т. 30. № 2. С. 152–163.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library